OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 13 — May. 1, 2014
  • pp: 2766–2772

Light-modulating pressure sensor with integrated flexible organic light-emitting diode

D. Cheneler, M. Vervaeke, and H. Thienpont  »View Author Affiliations


Applied Optics, Vol. 53, Issue 13, pp. 2766-2772 (2014)
http://dx.doi.org/10.1364/AO.53.002766


View Full Text Article

Enhanced HTML    Acrobat PDF (541 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Organic light-emitting diodes (OLEDs) are used almost exclusively for display purposes. Even when implemented as a sensing component, it is rarely in a manner that exploits the possible compliance of the OLED. Here it is shown that OLEDs can be integrated into compliant mechanical micro-devices making a new range of applications possible. A light-modulating pressure sensor is considered, whereby the OLED is integrated with a silicon membrane. It is shown that such devices have potential and advantages over current measurement techniques. An analytical model has been developed that calculates the response of the device. Ray tracing numerical simulations verify the theory and show that the design can be optimized to maximize the resolution of the sensor.

© 2014 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(160.4890) Materials : Organic materials
(250.3680) Optoelectronics : Light-emitting polymers
(280.5475) Remote sensing and sensors : Pressure measurement

ToC Category:
Integrated Optics

History
Original Manuscript: October 29, 2013
Revised Manuscript: March 26, 2014
Manuscript Accepted: March 26, 2014
Published: April 23, 2014

Citation
D. Cheneler, M. Vervaeke, and H. Thienpont, "Light-modulating pressure sensor with integrated flexible organic light-emitting diode," Appl. Opt. 53, 2766-2772 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-13-2766


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Y. Luo, L. M. Yu, J. X. Man, T. L. Liu, J. J. Li, T. Xu, Z. Liu, Z. B. Wang, and Z. H. Lu, “A bi-functional structure with tunable electrical and optical properties for organic photovoltaic cells,” J. Appl. Phys. 113, 224506 (2013). [CrossRef]
  2. H.-W. Chang, J. Lee, S. Hofmann, Y. H. Kim, L. Muller-Meskamp, B. Lussem, C.-C. Wu, K. Leo, and M. C. Gather, “Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells,” J. Appl. Phys. 113, 204502 (2013). [CrossRef]
  3. M. Zhang, Z. Chen, L. Xiao, B. Qu, and Q. Gong, “Optical design for improving optical properties of top-emitting organic light emitting diodes,” J. Appl. Phys. 113, 113105 (2013). [CrossRef]
  4. J. W. Park, D. C. Shin, and S. H. Park, “Large-area OLED lightings and their applications,” Semicond. Sci. Technol. 26, 034002 (2011). [CrossRef]
  5. J.-S. Park, H. Chae, H. K. Chung, and S. I. Lee, “Thin film encapsulation for flexible AM-OLED: a review,” Semicond. Sci. Technol. 26, 034001 (2011). [CrossRef]
  6. Y. Cai, “Organic light emitting diodes (OLEDs) and OLED-based structurally integrated optical sensors,” Master Thesis (Iowa State University, 2010).
  7. C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 3610–3617 (1989). [CrossRef]
  8. Y. Matsuda, K. Ueno, H. Yamaguchi, Y. Egami, and T. Niimi, “Organic electroluminescent sensor for pressure measurement,” Sensors 12, 13899–13906 (2012). [CrossRef]
  9. Z. Ma, “An electronic second skin,” Science 333, 830–831 (2011). [CrossRef]
  10. T. Sekitani and T. Someya, “Stretchable, large-area organic electronics,” Adv. Mater. 22, 2228–2246 (2010). [CrossRef]
  11. J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010). [CrossRef]
  12. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. 101, 9966–9970 (2004). [CrossRef]
  13. C. Grossmann, U. Gawronski, F. Perske, G. Notni, and A. Tünnermann, “Optical system designs based on bi-directional sensor devices,” Proc. SPIE 8487, 848706 (2012). [CrossRef]
  14. A. Martinez-Olmos, S. Capel-Cuevas, N. López-Ruiz, A. J. Palma, I. de Orbe, and L. F. Capitán-Vallvey, “Sensor array-based optical portable instrument for determination of pH,” Sens. Actuators B 156, 840–848 (2011). [CrossRef]
  15. S. Capel-Cuevas, M. P. Cuéllar, I. de Orbe-Payá, M. C. Pegalajar, and L. F. Capitán-Vallvey, “Full-range optical pH sensor array based on neural networks,” Microchem. J. 97, 225–233 (2011). [CrossRef]
  16. Y. Chuo, B. Omrane, C. Landrock, J. N. Patel, and B. Kaminska, “Platform for all-polymer-based pulse-oximetry sensor,” in IEEE Sensors, Kona, Hawaii, 1–4 November2010, pp. 155–159.
  17. K. Miyamoto, K. Kaneko, A. Matsuo, T. Wagner, S. Kanoh, M. J. Schöning, and T. Yoshinobu, “Miniaturized chemical imaging sensor system using an OLED display panel,” Sens. Actuators B 170, 82–87 (2012). [CrossRef]
  18. B. J. Choudhury, R. Shinar, and J. Shinar, “Luminescent chemical and biological sensors based on the structural integration of an OLED excitation source with a sensing component,” Proc. SPIE 5214, 64–72 (2004). [CrossRef]
  19. V. Savvateev, Z. Chen-Esterlit, J. W. Aylott, B. Choudhury, C.-H. Kim, L. Zou, J. H. Friedl, R. Shinar, J. Shinar, and R. Kopelman, “Integrated organic light-emitting device/fluorescence-based chemical sensors,” Appl. Phys. Lett. 81, 4652–4654 (2002). [CrossRef]
  20. X. L. Dai, S. J. Mihailov, and C. Blanchetiere, “Optical evanescent field waveguide Bragg grating pressure sensor,” Opt. Eng. 49, 024401 (2010). [CrossRef]
  21. M. Rothmaier, M. P. Luong, and F. Clemens, “Textile pressure sensor made of flexible plastic optical fibers,” Sensors 8, 4318–4329 (2008). [CrossRef]
  22. D. R. Hines, V. W. Ballarotto, E. D. Williams, Y. Shao, and S. A. Solin, “Transfer printing methods for the fabrication of flexible organic electronics,” J. Appl. Phys. 101, 024503 (2007). [CrossRef]
  23. C. Wu, Y. Zhao, S. Xiong, E. Liu, W. Xie, L. Reng, H. Cheng, and G. Yu, “Design on a novel a-Si PIN/OLED image sensor & display device,” SID Symposium Digest of Technical Papers 30, 528–531 (2012).
  24. M. Ramuz, B. C.-K. Tee, J. B.-H. Tok, and S. Bao, “Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics,” Adv. Mater. 24, 3223–3227 (2012). [CrossRef]
  25. U. Vogel, D. Kreye, S. Reckziegel, M. Törker, C. Grillberger, and J. Amelung, “OLED-on-CMOS integration for optoelectronic sensor applications,” Proc. SPIE 6477, 647703 (2007). [CrossRef]
  26. Y. Li, D. Chen, and J. Wang, “Vacuum adhesive bonding and stress isolation for MEMS resonant pressure sensor package,” Mater. Science Forum 694, 896–900 (2011). [CrossRef]
  27. K. Ikeda, H. Kuwayama, T. Kobayashi, T. Watanabe, T. Nishikawa, T. Yoshida, and T. Harada, “Silicon pressure sensor integrates resonant strain gauge on diaphragm,” Sens. Actuatuators A 21, 146–150 (1990). [CrossRef]
  28. Z. Tang, S. Fan, W. Xing, Z. Guo, and Z. Zhang, “An electrothermally excited dual beams silicon resonant pressure sensor with temperature compensation,” Microsyst. Technol. 17, 1481–1490 (2011). [CrossRef]
  29. C. Li, P.-M. Wu, L. A. Shutter, and R. K. Narayan, “Dual-mode operation of flexible piezoelectric polymer diaphragm for intracranial pressure measurement,” Appl. Phys. Lett. 96, 053502 (2010). [CrossRef]
  30. B. Morten, G. De Cicco, and M. Prudenziati, “Resonant pressure sensor based on piezoelectric properties of ferroelectric thick films,” Sens. Actuators A 31, 153–158 (1992). [CrossRef]
  31. E. Ventsel, Thin Plates and Shells: Theory, Analysis, and Applications (Marcel Dekker, 2001).
  32. J. N. Reddy, Theory and Analysis of Elastic Plates (Taylor & Francis, 1999).
  33. M. Deshpande and L. Saggere, “An analytical model and working equations for static deflections of a circular multi-layered diaphragm-type piezoelectric actuator,” Sens. Actuators A 136, 673–689 (2007). [CrossRef]
  34. M. F. Modest, Radiative Heat Transfer (McGraw-Hill, 1993).
  35. P. Moon, The Scientific Basis of Illuminating Engineering (McGraw-Hill, 1936).
  36. X. Liu, Y. Zhu, M. W. Nomani, X. Wen, T. Y. Hsia, and G. Koley, “A highly sensitive pressure sensor using a Au-patterned polydimethylsiloxane membrane for biosensing applications,” J. Micromech. Microeng. 23, 025022 (2013). [CrossRef]
  37. D. Cheneler, M. Vervaeke, H. Thienpont, V. G. Lambertini, and M. Brignone, “OLED integrated silicon membranes for light modulation devices,” Proc. SPIE 9141, 9141–9146 (2014).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited