OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 13 — May. 1, 2014
  • pp: 2847–2852

Light-scattering effectiveness of two-dimensional disordered surface textures in thin-film silicon solar cells

Pinghui S. Yeh, Chien-Wei Chen, Bing-Ru Yang, and Lu-Sheng Hong  »View Author Affiliations


Applied Optics, Vol. 53, Issue 13, pp. 2847-2852 (2014)
http://dx.doi.org/10.1364/AO.53.002847


View Full Text Article

Enhanced HTML    Acrobat PDF (744 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To compare the light-scattering effectiveness of surface-textured solar cells of various design parameters such as density, diameter, refractive index, and location, this study used a new parameter, optical path length gain (OPLG), that is more sensitive than Haze. By modeling two-dimensional disordered textures as a structure that comprises many randomly distributed, small, spherical scatterers, ray-tracing simulations of surface-textured thin-film silicon solar cells were performed. The simulation results suggest that: (1) the optimal scatterer diameter for hydrogenated amorphous silicon (a-Si:H) solar cells is 50nm, producing an average OPLG of 3.5; and (2) the optimal scatterer diameter for a-Si:H/μc-Si:H (hydrogenated microcrystalline silicon) tandem cells is 75nm, producing an average OPLG of 3.4 and an increase in the bandwidth of the absorption spectrum of 14.5%.

© 2014 Optical Society of America

OCIS Codes
(290.1990) Scattering : Diffusion
(290.5850) Scattering : Scattering, particles
(290.5880) Scattering : Scattering, rough surfaces

ToC Category:
Scattering

History
Original Manuscript: November 29, 2013
Revised Manuscript: March 25, 2014
Manuscript Accepted: March 29, 2014
Published: April 25, 2014

Citation
Pinghui S. Yeh, Chien-Wei Chen, Bing-Ru Yang, and Lu-Sheng Hong, "Light-scattering effectiveness of two-dimensional disordered surface textures in thin-film silicon solar cells," Appl. Opt. 53, 2847-2852 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-13-2847


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S.-J. Byun, S. Y. Byun, J. Lee, J. W. Kim, T. S. Lee, W. M. Kim, Y. K. Park, and K. Cho, “An optical simulation algorithm based on ray tracing technique for light absorption in thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 408–411 (2011). [CrossRef]
  2. T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90, 2647–2656 (2006). [CrossRef]
  3. X.-S. Hua, Y.-J. Zhang, and H.-W. Wang, “The effect of texture unit shape on silicon surface on the absorption properties,” Sol. Energy Mater. Sol. Cells 94, 258–262 (2010). [CrossRef]
  4. S.-Y. Lien, C.-H. Yang, C.-H. Hsu, Y.-S. Lin, C.-C. Wang, and D.-S. Wuu, “Optimization of textured structure on crystalline silicon wafer for heterojunction solar cell,” Mater. Chem. Phys. 133, 63–68 (2012). [CrossRef]
  5. C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91, 061116 (2007). [CrossRef]
  6. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express 17, 23058–23065 (2009). [CrossRef]
  7. A. Campa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krc, M. Topic, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovoltaics 18, 160–167 (2010). [CrossRef]
  8. P. Wang and R. Menon, “Simulation and optimization of 1-D periodic dielectric nanostructures for light-trapping,” Opt. Express 20, 1849–1855 (2012). [CrossRef]
  9. M. Foldyna, L. Yu, and P. R. i. Cabarrocas, “Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells,” Sol. Energy Mater. Sol. Cells 117, 645–651 (2013). [CrossRef]
  10. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
  11. S. H. Lin, Y. C. Chan, D. P. Webb, and Y. W. Lam, “Optical characterization of hydrogenated amorphous silicon thin films deposited at high rate,” J. Electron. Mater. 28, 1452–1456 (1999). [CrossRef]
  12. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  13. L. Zhang, I. A. Yunaz, S. Kasashima, H. Wada, A. Hongsingthong, T. Krajangsang, Y. Kurokawa, and M. Konagai, “Light management of a-Si:H solar cells using textured zinc oxide with adjustable haze values,” Phys. Status Solidi C8, 2998–3001 (2011). [CrossRef]
  14. K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “A scattering model for nano-textured interfaces and its application in optoelectrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012). [CrossRef]
  15. J. Muller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited