OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 13 — May. 1, 2014
  • pp: 2866–2869

Coherent broadband light generation with a double-path configuration

Kai Wang, Miaochan Zhi, Xia Hua, James Strohaber, and Alexei V. Sokolov  »View Author Affiliations

Applied Optics, Vol. 53, Issue 13, pp. 2866-2869 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (363 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We generate broadband light by focusing two femtosecond pulses into a Raman-active crystal. By reflecting Raman sideband beams together with the two driving beams back to the same crystal (with a slight spatial offset), we generate sidebands covering a broader spectral range, compared to a single pass. In this novel double-path configuration, multiple Raman sideband beams interact with each other since the phase-matching condition is automatically fulfilled. This scheme enables an enhanced cascaded coherent anti-Stokes scattering process and also doubles the interaction length, thus it allows one to use relatively weak energy pump pulses and thereby avoid optical damage.

© 2014 Optical Society of America

OCIS Codes
(320.0320) Ultrafast optics : Ultrafast optics
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Ultrafast Optics

Original Manuscript: January 28, 2014
Revised Manuscript: March 24, 2014
Manuscript Accepted: March 25, 2014
Published: April 25, 2014

Kai Wang, Miaochan Zhi, Xia Hua, James Strohaber, and Alexei V. Sokolov, "Coherent broadband light generation with a double-path configuration," Appl. Opt. 53, 2866-2869 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001). [CrossRef]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800  nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]
  3. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef]
  4. C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D 37, 3296–3303 (2004). [CrossRef]
  5. H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, and T. Morioka, “Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source,” Electron. Lett. 41, 270–271 (2005). [CrossRef]
  6. H. Delbarre and M. Tassou, “Atmospheric gas trace detection with ultrashort pulses or white light continuum,” in Conference on Lasers and Electro-Optics Europe (IEEE, 2000), p. CWF104.
  7. S. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B 75, 799–802 (2002). [CrossRef]
  8. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006). [CrossRef]
  9. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 6029, 555–559 (2011). [CrossRef]
  10. G. Sansone, L. Poletto, and M. Nisoli, “High-energy attosecond light sources,” Nat. Photonics 5, 655–663 (2011). [CrossRef]
  11. S. Baker, I. A. Walmsley, J. W. G. Tisch, and J. P. Marangos, “Femtosecond to attosecond light pulses from a molecular modulator,” Nat. Photonics 5, 664–671 (2011). [CrossRef]
  12. A. V. Sokolov and S. E. Harris, “Ultrashort pulse generation by molecular modulation,” J. Opt. B 5, R1–R26 (2003). [CrossRef]
  13. S. E. Harris and A. V. Sokolov, “Subfemtosecond pulse generation by molecular modulation,” Phys. Rev. Lett. 81, 2894 (1998). [CrossRef]
  14. M. Zhi and A. V. Sokolov, “Broadband coherent light generation in a Raman-active crystal driven by two color femtosecond laser pulses,” Opt. Lett. 32, 2251–2253 (2007). [CrossRef]
  15. J. T. Green, D. E. Sikes, and D. D. Yavuz, “Continuous-wave high-power rotational Raman generation in molecular deuterium,” Opt. Lett. 34, 2563–2565 (2009). [CrossRef]
  16. H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science 331, 1165–1168 (2011). [CrossRef]
  17. M. Zhi, K. Wang, X. Hua, and A. V. Sokolov, “Pulse-shaper-assisted phase control of a coherent broadband spectrum of Raman sidebands,” Opt. Lett. 36, 4032–4034 (2011). [CrossRef]
  18. A. V. Sokolov, D. D. Yavuz, D. R. Walker, G. Y. Yin, and S. E. Harris, “Light modulation at molecular frequencies,” Phys. Rev. A 63, 051801 (2001). [CrossRef]
  19. K. Wang, M. Zhi, X. Hua, and A. V. Sokolov, “A scheme allowing synthesis and characterization of ultrafast waveforms using coherent Raman sidebands, prepared,” in preparation.
  20. T. Kobayashi, J. Liu, and Y. Kida, “Generation and optimization of femtosecond pulses by four-wave mixing process,” IEEE J. Select. Topics Quant. Electron. 18, 54–65 (2012). [CrossRef]
  21. R. Weigand, J. T. Mendonca, and H. M. Crespo, “Cascaded nondegenerate four-wave-mixing technique for high-power single-cycle pulse synthesis in the visible and ultraviolet ranges,” Phys. Rev. A 79, 063838 (2009). [CrossRef]
  22. Y. Kida, J. Liu, and T. Kobayashi, “Sub-10-fs deep-ultraviolet light source with stable power and spectrum,” Appl. Opt. 51, 6403–6410 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited