OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 13 — May. 1, 2014
  • pp: 2881–2885

Performance of line-scan Raman microscopy for high-throughput chemical imaging of cell population

Ji Qi and Wei-Chuan Shih  »View Author Affiliations

Applied Optics, Vol. 53, Issue 13, pp. 2881-2885 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (647 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We evaluate the performance of line-scan Raman microscopy (LSRM), a versatile label-free technique, for high-throughput chemical imaging of cell population. We provide detailed design and configuration of a home-built LSRM system developed in our laboratory. By exploiting parallel acquisition, the LSRM system achieves a significant throughput advantage over conventional point-scan Raman microscopy by projecting a laser line onto the sample and imaging the Raman scattered light from the entire line using a grating spectrograph and a charge-coupled device (CCD) camera. Two-dimensional chemical maps can be generated by scanning the projected line in the transverse direction. The resolution in the x and y direction has been characterized to be 600800nm for 785 nm laser excitation. Our system enables rapid classification of microparticles with similar shape, size, and refractive index based on their chemical composition. An equivalent imaging throughput of 100microparticles/s for 1 μm polystyrene beads has been achieved. We demonstrate the application of LSRM to imaging bacterial spores by identifying endogenous calcium dipicolinate. We also demonstrate that LSRM enables the study of intact microalgal cells at the colonial level and the identification of intra- and extracellular chemical constituents and metabolites, such as chlorophyll, carotenoids, lipids, and hydrocarbons. We conclude that LSRM can be an effective and practical tool for obtaining endogenous microscopic chemical and molecular information from cell population.

© 2014 Optical Society of America

OCIS Codes
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Imaging Systems

Original Manuscript: December 24, 2013
Revised Manuscript: March 31, 2014
Manuscript Accepted: April 3, 2014
Published: April 29, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Ji Qi and Wei-Chuan Shih, "Performance of line-scan Raman microscopy for high-throughput chemical imaging of cell population," Appl. Opt. 53, 2881-2885 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. J. Puppels, F. F. M. Demul, C. Otto, J. Greve, M. Robertnicoud, D. J. Arndtjovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347, 301–303 (1990). [CrossRef]
  2. C. Matthaus, S. Boydston-White, M. Miljkovic, M. Romeo, and M. Diem, “Raman and infrared microspectral imaging of mitotic cells,” Appl. Spectrosc. 60, 1–8 (2006). [CrossRef]
  3. L. Hartsuiker, N. J. L. Zeijen, L. Terstappen, and C. Otto, “A comparison of breast cancer tumor cells with varying expression of the Her2/neu receptor by Raman microspectroscopic imaging,” Analyst 135, 3220–3226 (2010). [CrossRef]
  4. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 102, 12371–12376 (2005). [CrossRef]
  5. V. V. Pully, A. T. M. Lenferink, and C. Otto, “Time-lapse Raman imaging of single live lymphocytes,” J. Raman Spectrosc. 42, 167–173 (2011). [CrossRef]
  6. B. D. Beier, R. G. Quivey, and A. J. Berger, “Identification of different bacterial species in biofilms using confocal Raman microscopy,” J. Biomed. Opt. 15, 066001 (2010). [CrossRef]
  7. T. Chernenko, C. Matthaus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” Acs Nano 3, 3552–3559 (2009). [CrossRef]
  8. Y. Y. Huang, C. M. Beal, W. W. Cai, R. S. Ruoff, and E. M. Terentjev, “Micro-Raman spectroscopy of algae: composition analysis and fluorescence background behavior,” Biotechnol. Bioeng. 105, 889–898 (2010).
  9. T. L. Weiss, H. J. Chun, S. Okada, S. Vitha, A. Holzenburg, J. Laane, and T. P. Devarenne, “Raman Spectroscopy analysis of botryococcene hydrocarbons from the green microalga Botryococcus braunii,” J. Biol. Chem. 285, 32458–32466 (2010). [CrossRef]
  10. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005). [CrossRef]
  11. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. W. He, J. S. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008). [CrossRef]
  12. J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W.-C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5, 4105–4109 (2013). [CrossRef]
  13. B. R. Masters and A. A. Thaer, “Real-time scanning slit confocal microscopy of the in vivo human cornea,” Appl. Opt. 33, 695–701 (1994). [CrossRef]
  14. M. B. Sinclair, J. A. Timlin, D. M. Haaland, and M. Werner-Washburne, “Design, construction, characterization, and application of a hyperspectral microarray scanner,” Appl. Opt. 43, 2079–2088 (2004). [CrossRef]
  15. W. C. Shih, K. L. Bechtel, and M. S. Feld, “Constrained regularization: hybrid method for multivariate calibration,” Anal. Chem. 79, 234–239 (2007). [CrossRef]
  16. A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10, 031114 (2005). [CrossRef]
  17. M. Okuno and H. Hamaguchi, “Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells,” Opt. Lett. 35, 4096–4098 (2010). [CrossRef]
  18. A. D. Gift, J. Y. Ma, K. S. Haber, B. L. McClain, and D. Ben-Amotz, “Near-infrared Raman imaging microscope based on fiber-bundle image compression,” J. Raman Spectrosc. 30, 757–765 (1999). [CrossRef]
  19. W. C. Shih, K. L. Bechtel, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part I: theory and simulations,” Opt. Express 16, 12726–12736 (2008). [CrossRef]
  20. K. Hamada, K. Fujita, N. I. Smith, M. Kobayashi, Y. Inouye, and S. Kawata, “Raman microscopy for dynamic molecular imaging of living cells,” J. Biomed. Opt. 13, 044027 (2008). [CrossRef]
  21. K. A. Christensen and M. D. Morris, “Hyperspectral Raman microscopic imaging using Powell lens line illumination,” Appl. Spectrosc. 52, 1145–1147 (1998). [CrossRef]
  22. J. Qi and W.-C. Shih, “Parallel Raman microspectroscopy using programmable multi-point illumination,” Opt. Lett. 37, 1289–1291 (2012). [CrossRef]
  23. J. Qi, J. Li, and W.-C. Shih, “High-speed hyperspectral Raman imaging for label-free compositional microanalysis,” Biomed. Opt. Express 4, 2376–2382 (2013). [CrossRef]
  24. S. Schlucker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Analyt. Chem. 75, 4312–4318 (2003). [CrossRef]
  25. S. Stockel, S. Meisel, R. Bohme, M. Elschner, P. Rosch, and J. Popp, “Effect of supplementary manganese on the sporulation of Bacillus endospores analysed by Raman spectroscopy,” J. Raman Spectrosc. 40, 1469–1477 (2009). [CrossRef]
  26. J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy,” Anal. Chem. 76, 599–603 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited