OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 13 — May. 1, 2014
  • pp: 2899–2905

Designing photonic quasi-crystal fibers of various folds: onto optimization of efficiency and bandwidth of second harmonic generation

Ritapa Bhattacharjee, K. Senthilnathan, S. Sivabalan, and P. Ramesh Babu  »View Author Affiliations

Applied Optics, Vol. 53, Issue 13, pp. 2899-2905 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (863 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We design photonic quasi-crystal fibers (PQFs) of six-, eight-, ten-, and twelve-folds for determining the optimized efficiency as well as the bandwidth of second harmonic generation (SHG). We report a maximum SHG relative efficiency of 941.36%W1cm2 for a twelve-fold PQF of 2 μm pitch. The detailed numerical results reveal that, while the relative efficiency increases appreciably, the phase-matching bandwidth increases marginally, as and when the number of folds increases. As the primary interest of this work is to enhance the relative efficiency, we focus our analysis with a twelve-fold PQF for which the efficiency turns a maximum. In line with the practical feasibility of poling, we keep the pitch at 7 μm and report an optimized relative efficiency and phase-matching bandwidth as 95.28%W1cm2 and 50.51 nm.cm, respectively.

© 2014 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(140.3515) Lasers and laser optics : Lasers, frequency doubled
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Nonlinear Optics

Original Manuscript: January 6, 2014
Revised Manuscript: April 1, 2014
Manuscript Accepted: April 3, 2014
Published: April 30, 2014

Ritapa Bhattacharjee, K. Senthilnathan, S. Sivabalan, and P. Ramesh Babu, "Designing photonic quasi-crystal fibers of various folds: onto optimization of efficiency and bandwidth of second harmonic generation," Appl. Opt. 53, 2899-2905 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. V. Stryland, “All-optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323–1325 (1993). [CrossRef]
  2. K. M. Ok, E. O. Chi, and P. S. Halasyamani, “Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity,” Chem. Soc. Rev. 35, 710–717 (2006). [CrossRef]
  3. P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal Chem. 83, 3224–3231 (2011). [CrossRef]
  4. Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, “Second-harmonic optical coherence tomography,” Opt. Lett. 29, 1090–1092 (2004). [CrossRef]
  5. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961). [CrossRef]
  6. M. Houé and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D 28, 1747–1763 (1995). [CrossRef]
  7. M. M. Fejer, G. A. Magel, H. D. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  8. W. Margulis and U. Österberg, “Second-harmonic generation in optical glass fibers,” J. Opt. Soc. Am. B 5, 312–316 (1988). [CrossRef]
  9. A. Arraf and C. Martijn de Sterke, “Large-bandwidth frequency conversion in high-NA step index optical fibers,” IEEE J. Quantum Electron. 34, 660–665 (1998). [CrossRef]
  10. P. G. Kazansky and V. Pruneri, “Electric-field poling of quasi-phase-matched optical fibers,” J. Opt. Soc. Am. B 14, 3170–3179 (1997). [CrossRef]
  11. Y. Quiquempois, N. Godbout, and S. Lacroix, “Thermal poling of thin silica glass films: design rules for optical fibers and waveguides,” Phys. Rev. A 71, 063809 (2005). [CrossRef]
  12. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000). [CrossRef]
  13. I. Tomita, M. Asobe, H. Suzuki, J. Yumoto, and Y. Yoshikuni, “Broadband quasi-phase-matched second-harmonic generation in a nonlinear photonic crystal,” J. Appl. Phys. 100, 023120 (2006). [CrossRef]
  14. T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 981–983 (2001). [CrossRef]
  15. D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett. 37, 107–108 (2001). [CrossRef]
  16. M. Bache, H. Nielsen, J. Lægsgaard, and O. Bang, “Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch,” Opt. Lett. 31, 1612–1614 (2006). [CrossRef]
  17. J. Lægsgaard, P. J. Roberts, and M. Bache, “Tailoring the dispersion properties of photonic crystal fibers,” Opt. Quantum Electron. 39, 995–1008 (2007). [CrossRef]
  18. I. N. M. Wijeratne, N. Kejalakshmy, A. Agrawal, B. M. A. Rahman, and K. T. V. Gratan, “Numerical analysis of second harmonic generation in soft glass equiangular spiral photonic crystal fibers,” IEEE Photon. J. 4, 357–368 (2012). [CrossRef]
  19. A. Bétourné, Y. Quiquempois, G. Bouwmans, and M. Douay, “Design of a photonic crystal fiber for phase-matched frequency doubling or tripling,” Opt. Express 16, 14255–14262 (2008). [CrossRef]
  20. H. Ren, A. Nazarkin, J. Nold, and P. S. Russell, “Quasi-phase-matched high harmonic generation in hollow core photonic crystal fibers,” Opt. Express 16, 17052–17059 (2008). [CrossRef]
  21. R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005). [CrossRef]
  22. Y. Sheng, K. Koynov, J. Dou, B. Ma, J. Li, and D. Zhang, “Collinear second harmonic generations in a nonlinear photonic quasicrystal,” Appl. Phys. Lett. 92, 201113 (2008). [CrossRef]
  23. S. Sivabalan and J. P. Raina, “High normal dispersion and large mode area photonic quasi-crystal fiber Stretcher,” IEEE Photon. Technol. Lett. 23, 1139–1141 (2011). [CrossRef]
  24. S. Sivabalan and J. P. Raina, “Large pitch photonic quasi-crystal fiber amplifier,” IEEE Photon. J. 4, 943–951 (2012). [CrossRef]
  25. S. Kim, C. Kee, and J. Lee, “Novel optical properties of six-fold symmetric photonic quasicrystal fibers,” Opt. Express 15, 13221–13227 (2007). [CrossRef]
  26. S. Kim and C. Kee, “Dispersion properties of dual-core photonic-quasicrystal fiber,” Opt. Express 17, 15885–15890 (2009). [CrossRef]
  27. H. Zhao, R. P. Zaccaria, P. Verma, J. Song, and H. Sun, “Validity of the V parameter for photonic quasi-crystal fibers,” Opt. Lett. 35, 1064–1066 (2010). [CrossRef]
  28. R. Bhattacharjee, K. Senthilnathan, S. Sivabalan, and P. Ramesh Babu, “Exploring a photonic quasi-crystal fiber for enhancing the efficiency of second harmonic generation: modeling and analysis,” Opt. Mater. 35, 2132–2137 (2013). [CrossRef]
  29. S. Ashihara, T. Shimura, and K. Kuroda, “Group-velocity matched second-harmonic generation in tilted quasi-phase-matched gratings,” J. Opt. Soc. Am. B 20, 853–856 (2003). [CrossRef]
  30. J. Liu, Z. Fan, H. Xiao, W. Zhang, C. Guan, and L. Yuan, “Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals,” Appl. Opt. 50, 4868–4872 (2011). [CrossRef]
  31. J. E. S. Socolar, “Weak matching rules for quasicrystals,” Commun. Math. Phys. 129, 599–619 (1990). [CrossRef]
  32. M. Oxborrow and C. L. Henley, “Random square-triangle tilings: a model for twelvefold-symmetric quasicrystals,” Phys. Rev. B 48, 6966–6998 (1993). [CrossRef]
  33. H. Zhao, R. P. Zaccaria, J. Song, S. Kawata, and H. Sun, “Photonic quasicrystals exhibit zero-transmission regions due to translational arrangement of constituent parts,” Phys. Rev. B. 79, 115118 (2009). [CrossRef]
  34. J. Romero-Vivas, D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor Torres, “Resonant add-drop filter based on a photonic quasicrystal,” Opt. Express 13, 826–835 (2005). [CrossRef]
  35. Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, “Localized modes in defect-free dodecagonal quasiperiodic photonic crystals,” Phys. Rev. B 68, 165106 (2003). [CrossRef]
  36. J. H. Simmons and K. S. Potter, Optical Materials (Academic, 2000).
  37. R. T. Bise and D. Trevor, “Solgel-derived microstructured fibers: fabrication and characterization,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OWL6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited