OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 13 — May. 1, 2014
  • pp: 2917–2923

Spatial coating inhomogeneity of highly reflective mirrors determined by cavity ringdown measurements

Zhongqi Tan, Kaiyong Yang, Xingwu Long, Yibo Zhang, and Hans-Peter Loock  »View Author Affiliations

Applied Optics, Vol. 53, Issue 13, pp. 2917-2923 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (783 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The inhomogeneity of high-reflectivity mirror coatings is a potential error source in the application of the cavity ringdown technique. Here, the ringdown times for different transverse modes were recorded. Together with the observed spatial distribution of these modes the ringdown times can be used to approximately locate the position of coating defects. A simple model based on a weighted sum of Hermite–Gaussian mode functions is used to explain the experimental results.

© 2014 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.5700) Instrumentation, measurement, and metrology : Reflection
(310.0310) Thin films : Thin films
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

Original Manuscript: November 15, 2013
Revised Manuscript: March 27, 2014
Manuscript Accepted: March 28, 2014
Published: April 30, 2014

Zhongqi Tan, Kaiyong Yang, Xingwu Long, Yibo Zhang, and Hans-Peter Loock, "Spatial coating inhomogeneity of highly reflective mirrors determined by cavity ringdown measurements," Appl. Opt. 53, 2917-2923 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. He and B. J. Orr, “Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity,” Appl. Phys. B 85, 355–364 (2006). [CrossRef]
  2. D. Romanini and K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993). [CrossRef]
  3. J. M. Herbelin, J. A. McKay, M. A. Kwok, R. H. Ueunten, D. S. Urevig, D. J. Spencer, and D. J. Benard, “Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method,” Appl. Opt. 19, 144–147 (1980). [CrossRef]
  4. D. Z. Anderson, J. C. Frisch, and C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23, 1238–1245 (1984). [CrossRef]
  5. Z. Q. Tan, X. Long, K. Yang, and S. Wu, “Spectral ripple effect in continuous-wave fold-type cavity ring down spectroscopy,” J. Opt. Soc. Am. B 27, 2727–2730 (2010). [CrossRef]
  6. Y. Gong, Y. Han, and B. Li, “Effect of threshold value on high reflectivity measurement with optical feedback cavity ring-down technique,” Proc. SPIE 7283, 72830U (2009). [CrossRef]
  7. G. Berden and R. Engeln, eds., Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiley-Blackwell, 2009).
  8. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000). [CrossRef]
  9. M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Ann. Rep. Prog. Chem., Sect. C 101, 100–142 (2005).
  10. C. Vallance, “Innovations in cavity ringdown spectroscopy,” New J. Chem. 29, 867–874 (2005). [CrossRef]
  11. C. C. Harb, T. K. Boyson, A. G. Kallapur, I. R. Petersen, M. E. Calzada, T. G. Spence, K. P. Kirkbride, and D. S. Moore, “Pulsed quantum cascade laser-based CRDS substance detection: real-time detection of TNT,” Opt. Express 20, 15489–15502 (2012). [CrossRef]
  12. K. K. Lehmann and D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10263–10277 (1996). [CrossRef]
  13. J. T. Hodges and D. Lisak, “Frequency-stabilized cavity ring-down spectrometer for high-sensitivity measurements of water vapor concentration,” Appl. Phys. B 85, 375–382 (2006). [CrossRef]
  14. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997). [CrossRef]
  15. B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998). [CrossRef]
  16. A. Cygan, D. Lisak, P. Maslowski, K. Bielska, S. Wojtewicz, J. Domyslawska, R. S. Trawinski, R. Ciurylo, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum. 82, 063107 (2011). [CrossRef]
  17. T. Klaassen, J. de Jong, M. van Exter, and J. P. Woerdman, “Transverse mode coupling in an optical resonator,” Opt. Lett. 30, 1959–1961 (2005). [CrossRef]
  18. H. F. Huang and K. K. Lehmann, “Noise in cavity ring-down spectroscopy caused by transverse mode coupling,” Opt. Express 15, 8745–8759 (2007). [CrossRef]
  19. B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005). [CrossRef]
  20. W. T. Silfvast, Laser Fundamentals (Cambridge University, 2008).
  21. H. Kogelnik and T. Li, “Laser beams and resonators,” in Proceedings of the Institute of Electrical and Electronics Engineers (1966), Vol. 54, p. 1312.
  22. A. E. Siegman, Lasers (including the author’s list of corrections), 1st ed. (University Science Books, 1986).
  23. Z. Q. Tan and X. W. Long, “A developed optical-feedback cavity ring-down spectrometer and its application,” Appl. Spectrosc. 66, 492–495 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited