OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 13 — May. 1, 2014
  • pp: C45–C53

Video rate nine-band multispectral short-wave infrared sensor

Mary R. Kutteruf, Michael K. Yetzbacher, Michael J. DePrenger, Kyle M. Novak, Corey A. Miller, Trijntje Valerie Downes, and Andrey V. Kanaev  »View Author Affiliations


Applied Optics, Vol. 53, Issue 13, pp. C45-C53 (2014)
http://dx.doi.org/10.1364/AO.53.000C45


View Full Text Article

Enhanced HTML    Acrobat PDF (1930 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Short-wave infrared (SWIR) imaging sensors are increasingly being used in surveillance and reconnaissance systems due to the reduced scatter in haze and the spectral response of materials over this wavelength range. Typically SWIR images have been provided either as full motion video from framing panchromatic systems or as spectral data cubes from line-scanning hyperspectral or multispectral systems. Here, we describe and characterize a system that bridges this divide, providing nine-band spectral images at 30 Hz. The system integrates a custom array of filters onto a commercial SWIR InGaAs array. We measure the filter placement and spectral response. We demonstrate a simple simulation technique to facilitate optimization of band selection for future sensors.

© 2014 Optical Society of America

OCIS Codes
(300.6340) Spectroscopy : Spectroscopy, infrared
(310.1620) Thin films : Interference coatings
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(280.4788) Remote sensing and sensors : Optical sensing and sensors

History
Original Manuscript: November 26, 2013
Revised Manuscript: February 4, 2014
Manuscript Accepted: March 26, 2014
Published: April 18, 2014

Citation
Mary R. Kutteruf, Michael K. Yetzbacher, Michael J. DePrenger, Kyle M. Novak, Corey A. Miller, Trijntje Valerie Downes, and Andrey V. Kanaev, "Video rate nine-band multispectral short-wave infrared sensor," Appl. Opt. 53, C45-C53 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-13-C45


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008). [CrossRef]
  2. A. A. Richards, “Emerging applications for high-performance near-infrared imagers,” Proc. SPIE 4710, 450–455 (2002). [CrossRef]
  3. R. G. Driggers, V. Hodgkin, and R. Vollmerhausen, “What good is SWIR? Passive day comparison of VIS, NIR, and SWIR,” Proc. SPIE 8706, 87060L (2013). [CrossRef]
  4. T. Bakker, D. Turner, and J. Battaglia, “Development of a miniature InGaAs camera for wide operating temperature range using a temperature-parameterized uniformity correction,” Proc. SPIE 6940, 69400K (2008). [CrossRef]
  5. T. Martin, R. Brubaker, P. Dixon, M. Gagliardi, and T. Sudol, “640 × 512 InGaAs focal plane array camera for visible and SWIR imaging,” Proc. SPIE 5783, 12–20 (2005). [CrossRef]
  6. S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature,” Appl. Phys. Lett. 89, 151109 (2006). [CrossRef]
  7. C. O. Davis, J. Bowles, R. A. Leathers, D. Korwan, T. V. Downes, W. A. Snyder, W. J. Rhea, W. Chen, J. Fisher, W. P. Bissett, and R. A. Reisse, “Ocean PHILLS hyperspectral imager: design, characterization, and calibration,” Opt. Express 10, 210–221 (2002). [CrossRef]
  8. W. R. Johnson, S. J. Hook, P. Mouroulis, D. W. Wilson, S. D. Gunapala, V. Realmuto, A. Lamborn, C. Paine, J. M. Mumolo, and B. T. Eng, “HyTES: thermal imaging spectrometer development,” in Proceedings of 2011 IEEE Aerospace Conference, 1 (Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2011).
  9. B. P. Stevenson, W. B. Kendalla, C. M. Stellmanb, and F. M. Olchowski, “PHIRST light: a liquid crystal tunable filter hyperspectral sensor,” Proc. SPIE 5093, 104–113 (2003). [CrossRef]
  10. M. R. Descour, C. E. Volin, E. L. Dereniak, and K. J. Thome, “Demonstration of a high-speed nonscanning imaging spectrometer,” Opt. Lett. 22, 1271–1273 (1997). [CrossRef]
  11. M. Dombrowski and B. Catanzaro, “Spatially corrected full-cubed hyperspectral imager,” U.S. patent7,242,478 (10July2007).
  12. J. M. Eichenholz and J. Dougherty, “Ultracompact fully integrated megapixel multispectral imager,” Proc. SPIE 7218, 721814 (2009). [CrossRef]
  13. X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609–613 (2006). [CrossRef]
  14. J. D. Bray, K. M. Gaab, B. M. Lambert, and T. S. Lomheim, “Improvements to spectral spot-scanning technique for accurate and efficient data acquisition,” Proc. SPIE 7405, 74050L (2009). [CrossRef]
  15. H. Du and K. J. Voss, “Effects of point-spread function on calibration and radiometric accuracy of CCD camera,” Appl. Opt. 43, 665–670 (2004). [CrossRef]
  16. J. Gu, P. J. Wolfe, and K. Hirakawa, “Filterbank-based universal demosaicking,” in Proceedings of IEEE International Conference on Image Processing, 1981, Hong Kong (2010).
  17. A. V. Kanaev and C. W. Miller, “Multi-frame super-resolution algorithm for complex motion patterns,” Opt. Express 21, 19850–19866 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited