OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 13 — May. 1, 2014
  • pp: C54–C63

Characterization of the AWARE 10 two-gigapixel wide-field-of-view visible imager

D. L. Marks, P. R. Llull, Z. Phillips, J. G. Anderson, S. D. Feller, E. M. Vera, H. S. Son, S.-H. Youn, J. Kim, M. E. Gehm, D. J. Brady, J. M. Nichols, K. P. Judd, M. D. Duncan, J. R. Waterman, R. A. Stack, A. Johnson, R. Tennill, and C. C. Olson  »View Author Affiliations

Applied Optics, Vol. 53, Issue 13, pp. C54-C63 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1715 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



System requirements for many military electro-optic and IR camera systems reflect the need for both wide-field-of-view situational awareness as well as high-resolution imaging for target identification. In this work we present a new imaging system architecture designed to perform both functions simultaneously and the AWARE 10 camera as an example at visible wavelengths. We first describe the basic system architecture and user interface followed by a laboratory characterization of the system optical performance. We then describe a field experiment in which the camera was used to identify several maritime targets at varying range. The experimental results indicate that users of the system are able to correctly identify 10m targets at between 4 and 6 km with 70% accuracy.

© 2014 Optical Society of America

OCIS Codes
(110.3000) Imaging systems : Image quality assessment
(220.4830) Optical design and fabrication : Systems design
(220.4840) Optical design and fabrication : Testing
(220.4880) Optical design and fabrication : Optomechanics
(280.4788) Remote sensing and sensors : Optical sensing and sensors

Original Manuscript: December 4, 2013
Manuscript Accepted: March 3, 2014
Published: April 18, 2014

D. L. Marks, P. R. Llull, Z. Phillips, J. G. Anderson, S. D. Feller, E. M. Vera, H. S. Son, S.-H. Youn, J. Kim, M. E. Gehm, D. J. Brady, J. M. Nichols, K. P. Judd, M. D. Duncan, J. R. Waterman, R. A. Stack, A. Johnson, R. Tennill, and C. C. Olson, "Characterization of the AWARE 10 two-gigapixel wide-field-of-view visible imager," Appl. Opt. 53, C54-C63 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. K. Najar, R. Swaminathan, and J. M. Gluckman, “Combined wide angle and narrow angle imaging system and method for surveillance and monitoring,” https://www.collectiveip.com/patents/US06215519B1 (1998).
  2. J. M. Nichols, J. R. Waterman, R. Menon, and J. Devitt, “Modeling and analysis of a high performance mid-wave infrared panoramic periscope,” Opt. Eng. 49, 113202 (2010). [CrossRef]
  3. J. M. Nichols, K. P. Judd, C. C. Olson, J. R. Waterman, and J. D. Nichols, “Estimating detection and identification probabilities in maritime target acquisition,” Appl. Opt. 52, 2531–2545 (2013). [CrossRef]
  4. J. C. Marron and R. L. Kendrick, “Distributed aperture active imaging,” Proc. SPIE 6550, 65500A (2007). [CrossRef]
  5. “AN/AAQ-37 distributed aperture system,” http://www.northropgrumman.com/capabilities/anaaq37f35/pages/default.aspx (2013).
  6. T. C. Brusgard, “Distributed aperture infrared sensor system,” Proc. SPIE 3698, 58–66 (1999). [CrossRef]
  7. D. B. Pollock, T. E. Rogers, R. O. Klepfer, P. J. Reardon, C. N. Underwood, and S. K. Pitalo, “Aerial video reconnaissance using large sensor arrays,” Proc. SPIE 6538, 65381X (2007). [CrossRef]
  8. B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu, M. Stevens, C. Gershfield, M. Braun, J. D. Targrove, S. Wein, P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS),” Proc. SPIE 6981, 69810H (2008). [CrossRef]
  9. D. W. Sweeney, “Overview of the large synoptic survey telescope project,” Proc. SPIE 6267, 626706 (2006). [CrossRef]
  10. N. Kaiser, “Pan-STARRS: a wide-field optical survey telescope array,” Proc. SPIE 5489, 11–22 (2004). [CrossRef]
  11. D. J. Brady and N. Hagen, “Multiscale lens design,” Opt. Express 17, 10659–10674 (2009). [CrossRef]
  12. D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012). [CrossRef]
  13. D. L. Marks, H. S. Son, J. Kim, and D. J. Brady, “Engineering a gigapixel monocentric multiscale camera,” Opt. Eng. 51, 083202 (2012). [CrossRef]
  14. E. J. Tremblay, D. L. Marks, D. J. Brady, and J. E. Ford, “Design and scaling of monocentric multiscale imagers,” Appl. Opt. 51, 4691–4702 (2012). [CrossRef]
  15. D. L. Marks, E. J. Tremblay, J. E. Ford, and D. J. Brady, “Microcamera aperture scale in monocentric gigapixel cameras,” Appl. Opt. 50, 5824–5833 (2011). [CrossRef]
  16. I. Stamenov, I. P. Agurok, and J. E. Ford, “Optimization of two-glass monocentric lenses for compact panoramic imagers: general aberration analysis and specific designs,” Appl. Opt. 51, 7648–7661 (2012). [CrossRef]
  17. J. M. Nichols, J. Hines, and J. D. Nichols, “Selecting among competing models for electro-optic, infrared camera system range performance,” Opt. Eng. 52, 113108 (2013). [CrossRef]
  18. W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their applications,” Biometrika 57, 97–109 (1970). [CrossRef]
  19. “Example AWARE 10 imagery,” http://gigapan.com/gigapans?query=disp (2013).
  20. “Example 300 megapixel camera imagery,” http://gigapan.com/gigapans?query=aqueti (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited