OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 14 — May. 10, 2014
  • pp: 2949–2955

Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters

Minghao Sun, Honghui He, Nan Zeng, E. Du, Yihong Guo, Cheng Peng, Yonghong He, and Hui Ma  »View Author Affiliations

Applied Optics, Vol. 53, Issue 14, pp. 2949-2955 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (881 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polarization parameters contain rich information on the micro- and macro-structure of scattering media. However, many of these parameters are sensitive to the spatial orientation of anisotropic media, and may not effectively reveal the microstructural information. In this paper, we take polarization images of different textile samples at different azimuth angles. The results demonstrate that the rotation insensitive polarization parameters from rotating linear polarization imaging and Mueller matrix transformation methods can be used to distinguish the characteristic features of different textile samples. Further examinations using both experiments and Monte Carlo simulations reveal that the residue rotation dependence in these polarization parameters is due to the oblique incidence illumination. This study shows that such rotation independent parameters are potentially capable of quantitatively classifying anisotropic samples, such as textiles or biological tissues.

© 2014 Optical Society of America

OCIS Codes
(160.2290) Materials : Fiber materials
(290.4210) Scattering : Multiple scattering
(290.5855) Scattering : Scattering, polarization

ToC Category:

Original Manuscript: January 7, 2014
Revised Manuscript: March 31, 2014
Manuscript Accepted: April 7, 2014
Published: May 2, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Minghao Sun, Honghui He, Nan Zeng, E. Du, Yihong Guo, Cheng Peng, Yonghong He, and Hui Ma, "Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters," Appl. Opt. 53, 2949-2955 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001). [CrossRef]
  2. N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16, 110801 (2011). [CrossRef]
  3. V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, “Optical polarization in biomedical applications,” in Tissue Structure and Optical Models, E. Greenbaum, ed. (Springer, 2006), pp. 7–28.
  4. I. S. Nerbo, S. L. Roy, M. Foldyna, E. Sondergard, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment,” Opt. Express 19, 12551–12561 (2011). [CrossRef]
  5. B. Peng, T. Ding, and P. Wang, “Propagation of polarized light through textile material,” Appl. Opt. 51, 6325–6334 (2012). [CrossRef]
  6. A. Pierangelo, A. Benali, M. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19, 1582–1593 (2011). [CrossRef]
  7. M. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18, 10200–10208 (2010). [CrossRef]
  8. A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. Haj Ibrahim, S. Manhas, C. Fallet, M.-R. Antonelli, and A. De Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013). [CrossRef]
  9. N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2, 145–156 (2009). [CrossRef]
  10. M. Dubreuil, P. Babilotte, L. Martin, D. Sevrain, S. Rivet, Y. L. Grand, G. L. Brun, B. Turlin, and B. L. Jeune, “Mueller matrix polarimetry for improved liver fibrosis diagnosis,” Opt. Lett. 37, 1061–1063 (2012). [CrossRef]
  11. P. G. Ellingsen, M. B. Lilledahl, L. M. S. Aas, C. L. de Davies, and M. Kildemo, “Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy,” J. Biomed. Opt. 16, 116002 (2011). [CrossRef]
  12. R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991). [CrossRef]
  13. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002). [CrossRef]
  14. J. C. Ramella-Roman, K. Lee, S. A. Parahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9, 1305–1310 (2004). [CrossRef]
  15. S. L. Jacques, R. Samathama, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008). [CrossRef]
  16. X. Y. Jiang, N. Zeng, Y. H. He, and H. Ma, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34, 659–663 (2007).
  17. N. Zeng, X. Y. Jiang, Q. Gao, Y. H. He, and H. Ma, “Linear polarization difference imaging and its potential applications,” Appl. Opt. 48, 6734–6739 (2009). [CrossRef]
  18. H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Laser Med. 2, 129–137 (2013).
  19. M. Ahmad, S. Alali, A. Kim, M. F. G. Wood, M. Ikram, and I. A. Vitkin, “Do different turbid media with matched bulk optical properties also exhibit similar polarization properties,” Biomed. Opt. Express 2, 3248–3258 (2011). [CrossRef]
  20. G. Anna, H. Sauer, F. Goudail, and D. Dolfi, “Fully tunable active polarization imager for contrast enhancement and partial polarimetry,” Appl. Opt. 51, 5302–5309 (2012). [CrossRef]
  21. A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M. Antonelli, T. Novikova, B. Gayet, P. Validire, and A. Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17, 066009 (2012). [CrossRef]
  22. H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, Y. H. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere–cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013). [CrossRef]
  23. T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102, 241103 (2013). [CrossRef]
  24. H. H. He, N. Zeng, R. Liao, T. L. Yun, W. Li, Y. H. He, and H. Ma, “Application of sphere–cylinder scattering model to skeletal muscle,” Opt. Express 18, 15104–15112 (2010). [CrossRef]
  25. T. L. Yun, N. Zeng, W. Li, D. Z. Li, X. Y. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17, 16590–16602 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited