OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 14 — May. 10, 2014
  • pp: 2964–2973

Aerosols in coastal and inland areas in the equatorial African belt

Taddeo Ssenyonga, Dennis Muyimbwa, Willy Okullo, Yi-Chun Chen, Øvyind Frette, Børge Hamre, Andreas Steigen, Arne Dahlback, and Jakob J. Stamnes  »View Author Affiliations

Applied Optics, Vol. 53, Issue 14, pp. 2964-2973 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1375 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Aerosols affect the climate directly through absorption and reflection of sunlight back to space and indirectly by acting as cloud condensation nuclei. This paper is based on more than three decades of satellite data (1979–1994 and 1996–2012) from total ozone mapping spectrometer (TOMS) and ozone monitoring instrument (OMI), which have provided measurements of backscattered radiances in the wavelength range from 331 to 380 nm. These data have been used to determine the aerosol climatology and to investigate the influence of the aerosol index (AI) on the ultraviolet index (UVI) in coastal land areas in Serrekunda (13.28°N, 16.34°W), The Gambia, and Dar-es-Salaam (6.8°S, 39.26°E), Tanzania, as well as in inland areas in Kampala (0.19°N, 32.34°E), Uganda. Heavy aerosol loadings were found to occur in the dry seasons at all three locations. To reduce the influence of clouds, we disregarded TOMS and OMI data for days during which the UV reflectivity was larger than 9% and investigated the correlation of the AI with the UVI for the remaining days at the three locations. We found a high correlation coefficient of 0.82 for Serrekunda, but poor correlation for Kampala and Dar-es-Salaam. The average AI for Serrekunda was found to be about three times higher than that for Kampala or Dar-es-Salaam, and a positive trend was found for the AI in Kampala and Dar-es-Salaam, whereas a negative trend was found for the AI in Serrekunda.

© 2014 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: November 18, 2013
Revised Manuscript: March 27, 2014
Manuscript Accepted: March 30, 2014
Published: May 2, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Taddeo Ssenyonga, Dennis Muyimbwa, Willy Okullo, Yi-Chun Chen, Øvyind Frette, Børge Hamre, Andreas Steigen, Arne Dahlback, and Jakob J. Stamnes, "Aerosols in coastal and inland areas in the equatorial African belt," Appl. Opt. 53, 2964-2973 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, eds., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University, 2013).
  2. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds., Climate Change 2007-The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC (Cambridge University, 2007), Vol. 4.
  3. J. M. Prospero, P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill, “Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product,” Rev. Geophys. 40, 1, 1002 (2002). [CrossRef]
  4. J. A. J. Coakley, R. L. Bernstein, and P. A. Durkee, “Effect of ship stack effluents on cloud reflectance,” Science 237, 1020–1022 (1987). [CrossRef]
  5. Y. J. Kaufman and T. Nakajima, “Effect of Amazon smoke on cloud microphysics and albedo,” J. Appl. Meteorol. 32, 729–744 (1993). [CrossRef]
  6. Y. J. Kaufman and R. S. Fraser, “Confirmation of the smoke particles effect on clouds and climate,” Science 277, 1636–1639 (1997). [CrossRef]
  7. T. Nakajima, A. Higurashi, K. Kawamoto, and J. E. Penner, “A possible correlation between satellite-derived cloud and aerosol microphysical parameters,” Geophys. Res. Lett. 28, 1171–1174 (2001). [CrossRef]
  8. B. Lynn, A. Khain, D. Rosenfeld, and W. L. Woodley, “Effects of aerosols on precipitation from orographic clouds,” J. Geophys. Res. 112, 1–13 (2007).
  9. D. Rosenfeld, U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, “Flood or drought: how do aerosols affect precipitation?” Science 321, 1309–1313 (2008). [CrossRef]
  10. V. Ramanathan, P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, “Aerosols, climate, and the hydrological cycle,” Science 294, 2119–2124 (2001). [CrossRef]
  11. J. L. Lean and D. H. Rind, “How will Earth’s surface temperature change in future decades?” Geophys. Res. Lett. 36, L15708 (2009). [CrossRef]
  12. R. M. Harrison, A. M. Jones, and R. G. Lawrence, “Major component composition of PM10 and PM2.5 from roadside and urban background sites,” Atmos. Environ. 38, 4531–4538 (2004). [CrossRef]
  13. O. Torres, P. K. Bhartia, J. R. Herman, Z. Ahmad, and J. Gleason, “Derivation of aerosols properties from satellite measurements of backscattering ultraviolet radiation,” J. Geophys. Res. 103, 17099–17110 (1998). [CrossRef]
  14. O. Torres, P. K. Bhartia, J. R. Herman, Z. Ahmad, and J. Gleason, “Correction to derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis by o. Torres et al.,” J. Geophys. Res. 103, 23321 (1998). [CrossRef]
  15. J. R. Herman and E. A. Celarier, “Earth surface reflectivity climatology at 340  nm to 380  nm from TOMS data,” J. Geophys. Res. 102, 28003–28011 (1997). [CrossRef]
  16. R. J. van der, A. D. H. M. U. Peters, H. Eskes, K. F. Boersma, M. Van Roozendael, I. De Smedt, and H. M. Kelder, “Detection of the trend and seasonal variation in tropospheric NO2 over China,” J. Geophys. Res. 111, D12317 (2006). [CrossRef]
  17. I. Zyrichidou, M. E. Koukouli, D. S. Balis, E. Katragkou, D. Melas, A. Poupkou, I. Kioutsioukis, R. van der, A. F. K. Boersma, M. van Roozendael, and A. Richter, “Satellite observations and model simulations of tropospheric NO2 columns over south-eastern Europe,” Atmos. Chem. Phys. 9, 6119–6134 (2009). [CrossRef]
  18. I. Zyrichidou, M. Koukouli, D. Balis, I. Kioutsioukis, A. Poupkou, E. Katragkou, D. Melas, K. Boersma, and M. van Roozendael, “Evaluation of high resolution simulated and OMI retrieved tropospheric NO2 column densities over Southeastern Europe,” Atmos. Res. 122, 55–66 (2013). [CrossRef]
  19. D. P. Edwards, L. K. Emmons, J. C. Gille, A. Chu, J.-L. Attié, L. Giglio, S. W. Wood, J. Haywood, M. N. Deeter, S. T. Massie, D. C. Ziskin, and J. R. Drummond, “Satellite-observed pollution from southern hemisphere biomass burning,” J. Geophys. Res. 111, D14312 (2006).
  20. D. Chand, P. Guyon, P. Artaxo, O. Schmid, G. P. Frank, L. V. Rizzo, O. L. Mayol-Bracero, L. V. Gatti, and M. O. Andreae, “Optical and physical properties of aerosols in the boundary layer and free troposphere over the Amazon Basin during the biomass burning season,” Atmos. Chem. Phys. 6, 2911–2925 (2006). [CrossRef]
  21. R. A. Delmas, A. Druilhet, B. Cros, P. Durand, C. Delon, J. P. Lacaux, J. M. Brustet, D. Sera, C. Affre, A. Guenther, J. Greenberg, W. Baugh, P. Harley, L. Klinger, P. Ginoux, G. Brasseur, P. R. Zimmerman, J. M. Grgoire, E. Janodet, A. Tournier, P. Perros, T. Marion, A. Gaudichet, H. Cachier, S. Ruellan, P. Masclet, S. Cautenet, D. Poulet, C. B. Biona, D. Nganga, J. P. Tathy, A. Minga, J. Loemba-Ndembi, and P. Ceccato, “Experiment for regional sources and sinks of oxidants (EXPRESSO): an overview,” J. Geophys. Res. 104, 30609–30624 (1999). [CrossRef]
  22. S. L. Mkoma, W. Maenhaut, X. Chi, W. Wang, and N. Raes, “Characterisation of PM10 atmospheric aerosols for the wet season 2005 at two sites in east africa,” Atmos. Environ. 43, 631–639 (2009). [CrossRef]
  23. N. A. Krotkov, P. K. Bhartia, J. R. Herman, V. Fioletov, and J. Kerr, “Satellite estimation of spectral surface uv irradiance in the presence of tropospheric aerosols: 1. cloud-free case,” J. Geophys. Res. 103, 8779–8793 (1998). [CrossRef]
  24. J. B. Kerr, “Observed dependencies of atmospheric UV radiation and trends,” in Solar Ultraviolet Radiation (Springer, 1997), pp. 259–266.
  25. K. Stamnes, S. C. Tsay, W. Wiscombe, and K. Jayeweera, “Numerically stable algorithm for discrete-ordinate-method for radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef]
  26. J. V. Dave, “Effect of aerosols on the estimation of total ozone in an atmospheric column from the measurements of its ultraviolet radiance,” J. Atmos. Sci. 35, 899–911 (1978). [CrossRef]
  27. B. M. Herman and S. R. Browning, “A numerical solution to the equation of radiative transfer,” J. Atmos. Sci. 22, 559–566 (1965). [CrossRef]
  28. N. C. Hsu, J. R. Herman, P. K. Bhartia, C. J. Seftor, O. Torres, A. M. Thompson, J. F. Gleason, T. F. Eck, and B. N. Holben, “Detection of biomass burning smoke from TOMS measurements,” Geophys. Res. Lett. 23, 745–748 (1996). [CrossRef]
  29. J. R. Herman, P. K. Bhartia, O. Torres, C. Hsu, C. Seftor, and E. Celarier, “Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data,” J. Geophys. Res. 102, D14 (1997).
  30. N. C. Hsu, J. R. Herman, O. Torres, B. N. Holben, T. F. Eck, A. Smirnov, B. Chatenet, and F. Lavenu, “Comparison of the TOMS aerosols index with Sun-photometer aerosol optical thickness: results and applications,” J. Geophys. Res. 104, 6269–6279 (1999). [CrossRef]
  31. P. F. Levelt, G. H. J. van den Oord, M. R. Dobber, A. Malkki, H. Visser, J. de Vries, P. Stammes, J. O. V. Lundell, and H. Saari, “The ozone monitoring instrument,” IEEE Trans. Geosci. Remote Sens. 44, 1093–1101 (2006). [CrossRef]
  32. O. Torres, P. K. Bhartia, J. R. Herman, A. Sinyuk, P. Ginoux, and B. Holben, “A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements,” J. Atmos. Sci. 59, 398–413 (2002). [CrossRef]
  33. J. Li, B. E. Carlson, and A. A. Lacis, “A study on the temporal and spatial variability of absorbing aerosols using total ozone mapping spectrometer and ozone monitoring instrument aerosol index data,” J. Geophys. Res. 114, D09213 (2009).
  34. P. Kiss, I. M. Jánosi, and O. Torres, “Early calibration problems detected in TOMS Earth-Probe aerosol signal,” Geophys. Res. Lett. 34, L07803 (2007). [CrossRef]
  35. A. Dahlback and K. Stamnes, “A new spherical model for computing the radiation field available for photolysis and heating at twilight,” Planet. Space Sci. 39, 671–683 (1991). [CrossRef]
  36. T. Ssenyonga, J. J. Stamnes, A. Dahlback, A. Steigen, W. Okullo, and O. Frette, “Analysis of Ozone (O3) and erythemal UV (EUV) measured by TOMS in the equatorial African belt,” S. Afr. J. Sci. 106, 1–7 (2010).
  37. L. T. Molina and M. J. Molina, “Absolute absorption cross sections of ozone in the 185 to 350  nm wavelength range,” J. Geophys. Res. 91, 14501–14508 (1986). [CrossRef]
  38. M. Nicolet, “On the molecular scattering in the terrestrial atmosphere: an empirical formulae for its calculation in the homosphere,” Planet. Space Sci. 32, 1467–1468 (1984). [CrossRef]
  39. A. Dahlback, N. Gelsor, J. J. Stamnes, and Y. Gjessing, “UV measurements in the 3000–5000  m altitude region in Tibet,” J. Geophys. Res. 112, D09308 (2007). [CrossRef]
  40. J. Leun, X. Tang, and M. Tevini, “Environmental effects of ozone depletion and its interactions with climate change: 2002 Assessment,” Photochem. Photobiol. Sci. 2, 1–72 (2003).
  41. P. G. Hoel, Introduction to Mathematical Statistics (Wiley, 1947).
  42. T. F. Eck, P. K. Bhartia, P. H. Hwang, and L. L. Stowe, “Reflectivity of earth’s surface and clouds in ultraviolet from satellite observations,” J. Geophys. Res. 92, 4287–4296 (1987). [CrossRef]
  43. Z. Owiti and W. Zhu, “Spatial distribution of rainfall seasonality over east africa,” J. Geog. Reg. Plan. 5, 409–421 (2012). [CrossRef]
  44. S. O. Eze and A. A. Bola, “Effect of ambient temperature and rainfall on rice production in The Gambia: a case study of the central river region (CRR),” Agricultural Science Service research and development reports Storage pests / Ministry of Agriculture, Fisheries and Food 2, 79–83 (2013).
  45. T. Ogata and S.-P. Xie, “Semiannual cycle in zonal wind over the equatorial indian ocean,” J. Clim. 24, 6471–6485 (2011). [CrossRef]
  46. J. R. Herman, E. Celarier, and D. Larko, “UV 380  nm reflectivity of the earth’s surface, clouds and aerosols,” J. Geophys. Res. 106, 5335–5352 (2001). [CrossRef]
  47. B. N. Holben, “Characteristics of maximum-value composite images from temporal AVHRR data,” Int. J. Remote Sens. 7, 1417–1434 (1986). [CrossRef]
  48. Y. J. Kaufman, D. Tanré, and O. Boucher, “A satellite view of aerosols in the climate system,” Nature 419, 215–223 (2002). [CrossRef]
  49. B. D. Bou Karam, C. Flamant, P. Knippertz, O. Reitebuch, J. Pelon, M. Chong, and A. Dabas, “Dust emissions over the sahel associated with the West African monsoon intertropical discontinuity region: a representative case-study,” Q. J. R. Meteorol. Soc. 134, 621–634 (2008). [CrossRef]
  50. W. Thoma and K. Camara, “Community forestry enterprises: a case study of The Gambia,” (Food and Agriculture Organization of The United Nations, 2005).
  51. A. Kanyama, A. C. Kanyama, A. Linden, and J. Lupala, “Public transport in Dar-es-Salaam, Tanzania. Institutional challenges and opportunities for a sustainable transportation system,” (Swedish Defence Research Agency, 2004). (Available from Environmental Strategies Research Department at FOI/KTH, Stockholm.)
  52. S. Mkoma, W. Wang, X. Chi, N. Raes, and W. Maenhaut, “Aerosol chemistry, chemical mass closure, and aerosol sources at two sites in Tanzania,” in European Aerosol Conference, Salzburg-Austria (9–14 September2007).
  53. J. B. Nyakaana, H. Sengendo, and S. Lwasa, “Population, urban development and the environment in Uganda. The case of Kampala city and its environs,” in PRIPODE Workshop on Urban Population, Development and Environment Dynamics in Developing Countries, Nairobi-Kenya, 11–13 June2007.
  54. M. de Graaf, L. G. Tilstra, P. Wang, and P. Stammes, “Retrieval of the aerosol direct radiative effect over clouds from spaceborne spectrometry,” J. Geophys. Res. 117, D07207 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited