OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 14 — May. 10, 2014
  • pp: 3035–3042

Standoff two-color quantum ghost imaging through turbulence

Yu-Lang Xue, Ren-Gang Wan, Fei Feng, and Tong-Yi Zhang  »View Author Affiliations


Applied Optics, Vol. 53, Issue 14, pp. 3035-3042 (2014)
http://dx.doi.org/10.1364/AO.53.003035


View Full Text Article

Enhanced HTML    Acrobat PDF (551 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently, a two-color quantum ghost imaging configuration was proposed by Karmakar et al. [Phys. Rev. A 81, 033845 (2010)]. By illuminating an object located far away from the source and detector, with a signal beam of long wavelength to avoid absorption of short wavelengths in the atmosphere while a reference beam of short wavelength is detected locally, this imaging configuration can be appropriate for standoff sensing. In practice, the signal beam must propagate through atmosphere in the presence of serious turbulence. We analyzed theoretically the performance of this ghost imaging configuration through turbulence. Based on the Gaussian state source model and extended Huygens–Fresnel integral, a formula is derived to depict the ghost image formed through turbulence of a standoff reflective object. Numerical calculations are also given according to the formula. The results show that the image quality will be degraded by the turbulence, but the resolution can be improved by means of optimizing the wavelengths of the reference and signal beams even when the turbulence is very serious.

© 2014 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(280.3640) Remote sensing and sensors : Lidar
(110.0115) Imaging systems : Imaging through turbulent media

ToC Category:
Imaging Systems

History
Original Manuscript: January 28, 2014
Revised Manuscript: March 12, 2014
Manuscript Accepted: April 3, 2014
Published: May 7, 2014

Citation
Yu-Lang Xue, Ren-Gang Wan, Fei Feng, and Tong-Yi Zhang, "Standoff two-color quantum ghost imaging through turbulence," Appl. Opt. 53, 3035-3042 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-14-3035


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995). [CrossRef]
  2. A. Gatti, E. Brambilla, and L. A. Lugiato, “Quantum imaging,” Prog. Opt. 51, 251 (2008). [CrossRef]
  3. M. D. Angelo, M. V. Chekhova, and Y. H. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87, 013602 (2001). [CrossRef]
  4. J. Xiong, D. Z. Cao, F. Huang, H. G. Li, X. J. Sun, and K. G. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett. 94, 173601 (2005). [CrossRef]
  5. Y. H. Zhai, X. H. Chen, D. Zhang, and L. A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005). [CrossRef]
  6. A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum holography,” Opt. Express 9, 498–505 (2001). [CrossRef]
  7. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003). [CrossRef]
  8. A. Valencia, G. Scarcelli, M. D. Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005). [CrossRef]
  9. D. Z. Cao, J. Xiong, and K. G. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005). [CrossRef]
  10. Y. J. Cai and F. Wang, “Lensless imaging with partially coherent light,” Opt. Lett. 32, 205–207 (2007). [CrossRef]
  11. X. H. Chen, Q. Liu, K. H. Luo, and L. A. Wu, “Lensless ghost imaging with true thermal light,” Opt. Lett. 34, 695–697 (2009). [CrossRef]
  12. Y. P. Yao, R. G. Wan, Y. L. Xue, S. W. Zhang, and T. Y. Zhang, “Positive–negative nonlocal lensless imaging based on statistical optics,” Acta Phys. Sin. 62, 154201 (2013).
  13. W. Chen and X. Chen, “Ghost imaging for three-dimensional optical security,” Appl. Phys. Lett. 103, 221106 (2013). [CrossRef]
  14. W. Chen and X. Chen, “Object authentication in computational ghost imaging with the realizations less than 5% of Nyquist limit,” Opt. Lett. 38, 546–548 (2013). [CrossRef]
  15. R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801 (2008). [CrossRef]
  16. C. Wang, D. Zhang, Y. Bai, and B. Chen, “Ghost imaging for a reflected object with a rough surface,” Phys. Rev. A 82, 063814 (2010). [CrossRef]
  17. C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012). [CrossRef]
  18. R. Meyers, K. S. Deacon, and Y. H. Shih, “Turbulence-free ghost imaging,” Appl. Phys. Lett. 98, 111115 (2011). [CrossRef]
  19. R. Meyers, K. S. Deacon, and Y. H. Shih, “Positive-negative turbulence-free ghost imaging,” Appl. Phys. Lett. 100, 131114 (2012). [CrossRef]
  20. J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17, 7916–7921 (2009). [CrossRef]
  21. J. Cheng and J. Lin, “Unified theory of thermal ghost imaging and ghost diffraction through turbulent atmosphere,” Phys. Rev. A 87, 043810 (2013). [CrossRef]
  22. C. Li, T. Wang, J. Pu, W. Zhu, and R. Rao, “Ghost imaging with partially coherent light radiation through turbulent atmosphere,” Appl. Phys. B 99, 599–604 (2010). [CrossRef]
  23. N. D. Hardy and J. H. Shapiro, “Reflective ghost imaging through turbulence,” Phys. Rev. A 84, 063824 (2011). [CrossRef]
  24. K. W. C. Chan, D. S. Simon, A. V. Sergienko, N. D. Hardy, J. H. Shapiro, P. B. Dixon, G. A. Howland, J. C. Howell, J. H. Eberly, M. N. O’Sullivan, B. Rodenburg, and R. W. Boyd, “Theoretical analysis of quantum ghost imaging through turbulence,” Phys. Rev. A 84, 043807 (2011). [CrossRef]
  25. Y. P. Yao, R. G. Wan, S. W. Zhang, and T. Y. Zhang, “Effect of turbulence on visibility and signal-to-noise ratio of lensless ghost imaging with thermal light,” Optik 124, 6973–6977 (2013). [CrossRef]
  26. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “Two-color ghost imaging,” Phys. Rev. A 79, 033808 (2009). [CrossRef]
  27. D. Shi, C. Fan, P. Zhang, H. Shen, J. Zhang, C. Qiao, and Y. Wang, “Two-wavelength ghost imaging through atmospheric turbulence,” Opt. Express 21, 2050–2064 (2013). [CrossRef]
  28. S. Karmakar and Y. H. Shih, “Two-color ghost imaging with enhanced angular resolving power,” Phys. Rev. A 81, 033845 (2010). [CrossRef]
  29. B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A 77, 043809 (2008). [CrossRef]
  30. B. I. Erkmen and J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79, 023833 (2009). [CrossRef]
  31. H. T. Yura, “Mutual coherence function of a finite cross section optical beam propagating in a turbulent medium,” Appl. Opt. 11, 1399–1406 (1972). [CrossRef]
  32. G. R. Osche, Optical Detection Theory for Laser Applications (Wiley-Interscience, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited