OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 14 — May. 10, 2014
  • pp: 3049–3056

Bistability and all-optical flip–flop with active microring resonator

Qiliang Li, Hongliang Yuan, and Xianghong Tang  »View Author Affiliations

Applied Optics, Vol. 53, Issue 14, pp. 3049-3056 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (700 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we study the bistability of an active nonlinear microring resonator and design a flip–flop based on the active microring resonator. In the presence of nonlinear and linear loss, we use Er-doped gain medium in the microring to obtain gain to compensate for the loss of the resonator. Both analytical and numerical methods are used to solve the propagation in the microring with double couplers, and we obtain the hysteresis loops of the microring. The results obtained by the two methods reveal that, in the presence of nonlinearity in microring resonators, the system exhibits bistability, and the gain in the microring leads to a decrease of the bias power when the active microring is taken as a bistable switcher. Basing on the bistability of the microring, we realize a set–reset flip–flop by adding a positive or negative feedback onto the bias. We also find that the duration of the set and reset pulses must exceed the field buildup time of the microring if we want to achieve the switching of the bias signal. In our design, the duration time is about 2 ps.

© 2014 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.1450) Nonlinear optics : Bistability
(190.3270) Nonlinear optics : Kerr effect
(230.1150) Optical devices : All-optical devices
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Nonlinear Optics

Original Manuscript: February 27, 2014
Revised Manuscript: March 31, 2014
Manuscript Accepted: April 4, 2014
Published: May 7, 2014

Qiliang Li, Hongliang Yuan, and Xianghong Tang, "Bistability and all-optical flip–flop with active microring resonator," Appl. Opt. 53, 3049-3056 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. T. Hill, A. Srivatsa, N. Calabretta, Y. Liu, H. de Waurdt, G. D. Khoe, and H. J. S. Dorren, “1×2 optical packet switch using all-optical header processing,” Electron. Lett. 37, 774–775 (2001). [CrossRef]
  2. H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. de Waardt, and G. D. Khoe, “Optical packet switching and buffering by using all-optical signal processing methods,” J. Lightwave Technol. 21, 2–12 (2003). [CrossRef]
  3. Y. Liu, M. T. Hill, N. Calabretta, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical buffering in all-optical packet switched cross connects,” IEEE Photon. Technol. Lett. 14, 849–851 (2002). [CrossRef]
  4. M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical flip–flop based on coupled laser diodes,” IEEE J. Quantum Electron. 37, 405–413 (2001). [CrossRef]
  5. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004). [CrossRef]
  6. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical delay lines,” J. Opt. Soc. Am. B 21, 1665–1673 (2004). [CrossRef]
  7. Z. Xia and Z. Zhou, “Sensitivity analysis of microring resonator based biosensor: the quality factor perspective,” in Optics Valley of China International Symposium on Optoelectronics (IEEE, 2006), pp. 44–46.
  8. J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, and M. Yu, “Ultra-low-power carrier depletion Mach–Zehnder silicon optical modulator,” Opt. Express 20, 7081–7087 (2012). [CrossRef]
  9. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005). [CrossRef]
  10. H. Tazawa, Y. H. Kuo, I. Dunayevskiy, J. Luo, A. K.-Y. Jen, H. R. Fetterman, and W. H. Steier, “Ring resonator-based electro-optic polymer traveling-wave modulator,” J. Lightwave Technol. 24, 3514–3519 (2006). [CrossRef]
  11. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968–1975 (2002). [CrossRef]
  12. H. Kaneshige, Y. Ueyama, H. Yamada, T. Arakawa, and Y. Kokubun, “Quantum well Mach–Zehnder modulator with single microring resonator and optimized arm length,” in 17th Micro-optics. Conference (IEEE, 2011), pp. 1–2.
  13. M. Först, J. Niehusmann, T. Plötzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, “High-speed all-optical switching in ion-implanted silicon-on-insulator microring resonators,” Opt. Lett. 32, 2046–2048 (2007). [CrossRef]
  14. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature 1, 65–71 (2007).
  15. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062–1074 (2005). [CrossRef]
  16. Y. M. Landobasa and M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two ring system,” Opt. Express 16, 1796–1807 (2008). [CrossRef]
  17. A. Polar, T. Threepak, S. Mitatha, P. Bunyatnoparat, and P. P. Yupapin, “New wavelength division multiplexing bands generated by using a Gaussian pulse in a microring resonator system,” in International Symposium on Communications and Information Technology (IEEE, 2009), pp. 1063–1064.
  18. S. Tofighi, S. S. Farshemi, B. Sajjad, F. Shahshahani, and A. R. Bahrampour, “Optical bistability in fiber ring resonator containing an erbium doped fiber amplifier and quantum dot doped fiber saturable absorber,” Appl. Opt. 51, 7016–7024 (2012). [CrossRef]
  19. H. Seidel, “Bistable optical circuit using saturable absorber within a resonant cavity,” U.S. Patent3610731 (19May1969).
  20. M. Karimi, M. Lafouti, A. A. Amidiyan, and J. Sabbaghzadeh, “All-optical flip–flop based on nonlinear effects in fiber Bragg gratings,” Appl. Opt. 51, 21–26 (2012). [CrossRef]
  21. Z. Zang, “Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun. 285, 521–526 (2012). [CrossRef]
  22. Z. Zang and Y. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51, 3424–3430 (2012). [CrossRef]
  23. Z. Zang and Y. Zhang, “Low-switching power (<45  mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012). [CrossRef]
  24. H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976). [CrossRef]
  25. J. L. Jewell, M. C. Rushford, and H. M. Gibbs, “Use of a single nonlinear Fabry–Perot étalon as optical logic gates,” Appl. Phys. Lett. 44, 172–174 (1984). [CrossRef]
  26. A. D. McAulay, “All-optical switching and logic with an integrated optic microring resonator,” Proc. SPIE 5814, 16–22 (2005). [CrossRef]
  27. R. Bahrampour, M. Karimi, M. J. A. Qamsari, H. R. Nejad, and S. Keyvaninia, “All-optical set–reset flip–flop based on the passive microring-resonator bistability,” Opt. Commun. 281, 5104–5113 (2008). [CrossRef]
  28. A. R. Bahrampour, S. M. A. Mirzaee, F. Farman, and S. S. Zakeri, “All-optical flip–flop composed of a single nonlinear passive microring coupled to two straight waveguides,” Opt. Commun. 282, 427–433 (2009). [CrossRef]
  29. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002). [CrossRef]
  30. L. Kou, D. C. Hall, C. Strohhöfer, A. Polman, T. Zhang, R. M. Kolbas, R. D. Heller, and R. D. Dupuis, “Er-doped AlGaAs native oxides: photoluminescence characterization and process optimization,” IEEE J. Sel. Top. Quantum Electron. 8, 880–890 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited