OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 14 — May. 10, 2014
  • pp: 3057–3062

Residual dispersion compensation over the S + C + L + U wavelength bands using highly birefringent octagonal photonic crystal fiber

M. Samiul Habib, Redwan Ahmad, M. Selim Habib, and M. Imran Hasan  »View Author Affiliations


Applied Optics, Vol. 53, Issue 14, pp. 3057-3062 (2014)
http://dx.doi.org/10.1364/AO.53.003057


View Full Text Article

Enhanced HTML    Acrobat PDF (527 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An octagonal photonic crystal fiber (PCF) with an elliptical shape in the center core is numerically investigated for residual dispersion compensation in the wavelength range 1460–1675 nm. The designed fiber exhibits flattened negative dispersion over the S + C + L + U wavelength bands and an average dispersion of 465.5ps/(nm·km) with an absolute dispersion variation of 10.5ps/(nm·km). In addition, the proposed PCF shows a high birefringence of 2.68×102 at the operating wavelength 1550 nm, which meets the requirement of high birefringence. Moreover, the variation of two air holes in the first ring up to 5% ensures an average dispersion of 491.5ps/(nm·km) with a dispersion variation of 13ps/(nm·km), and birefringence reaches up to 3×102. Furthermore, to evaluate the sensitivity of the fiber dispersion properties, ±5% variation in the optimum parameters is studied.

© 2014 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 18, 2013
Revised Manuscript: March 4, 2014
Manuscript Accepted: April 11, 2014
Published: May 7, 2014

Citation
M. Samiul Habib, Redwan Ahmad, M. Selim Habib, and M. Imran Hasan, "Residual dispersion compensation over the S + C + L + U wavelength bands using highly birefringent octagonal photonic crystal fiber," Appl. Opt. 53, 3057-3062 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-14-3057


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. A. Razzak, Y. Namihira, and F. Begum, “Ultra flattened dispersion photonic crystal fiber,” Electron. Lett. 43, 615–617 (2007). [CrossRef]
  2. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852 (2003). [CrossRef]
  3. T. Matsui, J. Zhou, K. Nakajima, and I. Sankawa, “Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss,” J. Lightwave Technol. 23, 4178–4183 (2005). [CrossRef]
  4. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002), pp. 15–64.
  5. M. Koshiba and K. Saitoh, “Structural dependence of effective area and mode field diameter for holey fibers,” Opt. Express 11, 1746–1756 (2003). [CrossRef]
  6. S. K. Varshney, N. J. Florous, K. Saitoh, M. Koshiba, and T. Fujisawa, “Numerical investigation and optimization of a photonic crystal fiber for simultaneous dispersion compensation over S + C + L wavelength bands,” Opt. Commun. 274, 74–79 (2007). [CrossRef]
  7. J. P. da Silva, D. S. Bezerra, V. F. R. Esquerre, I. E. Fonseca, and H. E. H. Figueroa, “Ge-doped defect-core microstructured fiber design by genetic algorithm for residual dispersion compensation,” IEEE Photon. Technol. Lett. 22, 1337–1339 (2010). [CrossRef]
  8. M. A. R. Franco, V. A. Serrão, and F. Sircilli, “Microstructured optical fiber for residual dispersion compensation over S + C + L + U wavelength bands,” IEEE Photon. Technol. Lett. 20, 751–753 (2008). [CrossRef]
  9. M. A. Islam and M. S. Alam, “Design of a polarization-maintaining equiangular spiral photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands,” IEEE Photon. Technol. Lett. 24, 930–932 (2012). [CrossRef]
  10. M. A. Islam and M. S. Alam, “Design optimization of equiangular spiral photonic crystal fiber for large negative flat dispersion and high birefringence,” J. Lightwave Technol. 30, 3545–3551 (2012). [CrossRef]
  11. D. C. Tee, M. H. A. Bakar, N. Tamchek, and F. R. M. Adikan, “Photonic crystal fiber in photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands,” IEEE Photon. J. 5, 7200607 (2013). [CrossRef]
  12. M. Selim Habib, M. Samiul Habib, S. M. A. Razzak, and M. A. Hossain, “Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber,” Opt. Fiber Technol. 19, 461–467 (2013). [CrossRef]
  13. S. M. A. Razzak and Y. Namihira, “Tailoring dispersion and confinement losses of photonic crystal fibers using hybrid cladding,” J. Lightwave Technol. 26, 1909–1914 (2008). [CrossRef]
  14. S. M. A. Razzak, Y. Namihira, A. Y. Saber, and M. A. G. Khan, “Dispersion tolerance of various photonic crystal fibers,” Int. J. Optomechatron. 1, 359–368 (2007). [CrossRef]
  15. S. M. A. Razzak and Y. Namihira, “Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers,” IEEE Photon. Technol. Lett. 20, 249–251 (2008). [CrossRef]
  16. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28, 989–991 (2003). [CrossRef]
  17. A. Agrawal, N. Kejalakshmy, J. Chen, B. M. A. Rahman, and K. T. V. Grattan, “Golden spiral photonic crystal fiber: polarization and dispersion properties,” Opt. Lett. 33, 2716–2718 (2008). [CrossRef]
  18. J. Ju, W. Jin, and M. S. Demokan, “Design of a single polarization single mode photonic crystal fiber at 1.30 and 1.55  μm,” J. Lightwave Technol. 24, 825–830 (2006). [CrossRef]
  19. T. Ritari and H. Ludvigsen, “Experimental study of polarization properties of highly birefringent photonic crystal fibers,” Opt. Express 12, 5931–5939 (2004). [CrossRef]
  20. L. Xiao, W. Jin, and M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett. 32, 115–117 (2007). [CrossRef]
  21. S. G. L. Saval, T. A. Birks, N. Y. Joy, A. K. George, W. J. Wadsworth, G. Kakarantzas, and P. St. J. Rusell, “Splice-free interfacing of photonic crystal fibers,” Opt. Lett. 30, 1629–1631 (2005). [CrossRef]
  22. M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. A. Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20, 32–38 (2014). [CrossRef]
  23. S. Kim, C. S. Kee, and C. G. Lee, “Modified rectangular lattice photonic crystal fibers with high birefringence and negative dispersion,” Opt. Express 17, 7952–7957 (2009). [CrossRef]
  24. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and P. Hansen, “Modal cutoff and the V parameter in photonic crystal fibers,” Opt. Lett. 28, 1879–1881 (2003). [CrossRef]
  25. R. K. Gangwar, S. S. Mishra, and V. K. Singh, “Designing of endlessly single mode polarization maintaining highly birefringent nonlinear micro-structure fiber at telecommunication window by FV-FEM,” Optik 125, 1641–1645 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited