OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 14 — May. 10, 2014
  • pp: 3119–3124

Improved algorithm based on a fiber loop: applications for optical water vapor sensor

C. G. Zhu, J. Chang, P. P. Wang, Q. Wang, W. Wei, C. B. Tian, and S. S. Zhang  »View Author Affiliations

Applied Optics, Vol. 53, Issue 14, pp. 3119-3124 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (438 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An improved algorithm based on a fiber loop optical structure is proposed for measurement of water vapor concentration. Compared with the traditional algorithm, the intrinsic loss of optical devices in the loop is no longer necessary to be accurately measured but instead is directly eliminated by normalization. The concentration of the analyte can be determined by only two pulses without the need for exponential curve fitting, which leads to a significant reduction in the amount of data required to make a measurement. The restriction on the inherent loss of the fiber loop system also can be eased. In addition, a background absorption problem caused by the water vapor existing inside internal end-face gaps of optical components is solved. The mean absolute error of 29 parts per million by volume has been achieved with a 6.5 cm gas gap by using the new algorithm.

© 2014 Optical Society of America

OCIS Codes
(010.7340) Atmospheric and oceanic optics : Water
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(300.1030) Spectroscopy : Absorption
(150.5495) Machine vision : Process monitoring and control

ToC Category:
Fiber Optic Sensors

Original Manuscript: December 17, 2013
Revised Manuscript: April 9, 2014
Manuscript Accepted: April 9, 2014
Published: May 9, 2014

C. G. Zhu, J. Chang, P. P. Wang, Q. Wang, W. Wei, C. B. Tian, and S. S. Zhang, "Improved algorithm based on a fiber loop: applications for optical water vapor sensor," Appl. Opt. 53, 3119-3124 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Zhang, D. J. Webb, and G. D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol. 30, 1090–1096 (2012). [CrossRef]
  2. S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37  μm,” Appl. Phys. B 92, 393–401 (2008). [CrossRef]
  3. L. Fiorani, F. Colao, A. Palucci, D. Poreh, A. Aiuppa, and G. Giudice, “First-time lidar measurement of water vapor flux in a volcanic plume,” Opt. Commun. 284, 1295–1298 (2011). [CrossRef]
  4. V. Nagali and R. K. Hanson, “Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases,” Appl. Opt. 36, 9518–9527 (1997). [CrossRef]
  5. R. Irawan, G. B. Scelsi, and G. A. Woolsey, “Optical sensor for monitoring SF6 dissociation in high-voltage switchgear,” Proc. SPIE 4074, 175–183 (2000). [CrossRef]
  6. IEEE Std 1125-1993 IEEE Guide for Moisture Measurement and Control in SF6 Gas-insulated Equipment[S].
  7. M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, and D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995). [CrossRef]
  8. C. Zhu, J. Chang, P. Wang, W. Wang, Q. Wang, Y. Liu, G. Lv, X. Liu, W. Wei, F. Wang, and S. Zhang, “Reliability analysis and comparison of demodulation methods for dual-beam wavelength-modulation spectroscopy water vapor detection,” Appl. Opt. 52, 4171–4178 (2013). [CrossRef]
  9. L. Tao, K. Sun, M. A. Khan, D. J. Miller, and M. A. Zondlo, “Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser,” Opt. Express 20, 28106–28118 (2012). [CrossRef]
  10. H. J. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052–1061 (2006). [CrossRef]
  11. A. O’Keefe and D. Deacon, “Cavity ringdown optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  12. E. R. Crosson, “A cavity ringdown analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor,” Appl. Phys. B 92, 403–408 (2008). [CrossRef]
  13. S. S. Brown, H. Stark, S. J. Ciciora, R. J. McLaughlin, and A. R. Ravishankara, “Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ringdown spectroscopy,” Rev. Sci. Instrum. 73, 3291 (2002). [CrossRef]
  14. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2013). [CrossRef]
  15. K. Bescherer, J. A. Barnes, S. Dias, G. Gagliardi, H.-P. Loock, N. R. Trefiak, H. Waechter, and S. Yam, “Measurement of multi-exponential optical decay processes by phase-shift cavity ringdown,” Appl. Phys. B 96, 193–200 (2009). [CrossRef]
  16. K. Yu, C. Wu, and Z. Wang, “Optical methane sensor based on a fiber loop at 1665  nm,” IEEE Sens. J. 10, 728–731 (2010). [CrossRef]
  17. N. Ni, C. C. Chan, T. K. Chuah, L. Xia, and P. Shum, “Enhancing the measurement accuracy of a cavity-enhanced fiber chemical sensor by an adaptive filter,” Meas. Sci. Technol. 19, 115203 (2008). [CrossRef]
  18. C. G. Zhu, J. Chang, P. P. Wang, B. N. Sun, Q. Wang, W. Wei, X. Z. Liu, and S. S. Zhang, “Improvement of measurement accuracy of infrared moisture meter by considering the impact of moisture inside optical components,” IEEE Sens. J. 14, 920–925 (2014). [CrossRef]
  19. M. E. Webber, “Diode laser measurements of NH3 and CO2 for combustion and bioreactor applications,” PhD thesis (Stanford University, 2001).
  20. X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurements of spectral parameters of water-vapor transitions near 1388 and 1345  nm for accurate simulation of high-pressure absorption spectra,” Meas. Sci. Technol. 18, 1185–1194 (2007). [CrossRef]
  21. H. B. Wang, “Study on the gas concentration measurement based on the optical fiber cavity ringdown method,” PhD thesis (Yanshan University, 2010).
  22. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwer, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited