OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 14 — May. 10, 2014
  • pp: 3131–3141

Portable multispectral imaging system based on light-emitting diodes for spectral recovery from 370 to 1630  nm

Jorge Herrera-Ramírez, Meritxell Vilaseca, and Jaume Pujol  »View Author Affiliations

Applied Optics, Vol. 53, Issue 14, pp. 3131-3141 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1322 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To expand and investigate the potential of spectral imaging, we developed a portable multispectral system using light-emitting diodes. This system recovers spectral information from the UV to the near IR over a large area using two different image sensors synchronized with 23 bands of illumination. The system was assessed for spectral reconstruction through simulations and experimental measurements by means of two methods of spectral reconstruction and three different evaluation metrics. The results over a Macbeth ColorChecker chart and other samples, including pigments usually employed in art paintings, are compared and discussed. The portable multispectral system using LEDs constitutes a cost-effective and versatile method for spectral imaging.

© 2014 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(230.3670) Optical devices : Light-emitting diodes
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

Original Manuscript: February 13, 2014
Revised Manuscript: April 12, 2014
Manuscript Accepted: April 14, 2014
Published: May 9, 2014

Jorge Herrera-Ramírez, Meritxell Vilaseca, and Jaume Pujol, "Portable multispectral imaging system based on light-emitting diodes for spectral recovery from 370 to 1630  nm," Appl. Opt. 53, 3131-3141 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Weng, ed., Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications (CRC Press, 2011), p. 610.
  2. R. Shrestha, J. Y. Hardeberg, and A. Mansouri, “One-shot multispectral color imaging with a stereo camera,” Proc. SPIE 7876, 787609 (2011). [CrossRef]
  3. N. L. Everdell, I. B. Styles, A. S. Calcagni, J. Gibson, J. C. Hebden, and E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum. 81, 093706 (2010). [CrossRef]
  4. M. B. Bouchard, B. R. Chen, S. Burgess, and E. M. C. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express 17, 15670–15678 (2009). [CrossRef]
  5. M. Vilaseca, R. Mercadal, J. Pujol, M. Arjona, M. de Lasarte, R. Huertas, M. Melgosa, and F. H. Imai, “Characterization of the human iris spectral reflectance with a multispectral imaging system,” Appl. Opt. 47, 5622–5630 (2008). [CrossRef]
  6. A. Basiri, M. Nabili, S. Mathews, A. Libin, S. Groah, H. J. Noordmans, and J. C. Ramella-Roman, “Use of a multi-spectral camera in the characterization of skin wounds,” Opt. Express 18, 3244–3257 (2010). [CrossRef]
  7. V. C. Paquit, K. W. Tobin, J. R. Price, and F. Mèriaudeau, “3D and multispectral imaging for subcutaneous veins detection,” Opt. Express 17, 11360–11365 (2009). [CrossRef]
  8. M. Kubik, “Hyperspectral imaging: a new technique for the non-invasive study of artworks,” in Physical Techniques in the Study of Art, Archaeology and Cultural Heritage, D. Creagh and D. Bradley, eds. (Elsevier, 2007), Vol. 2, pp. 199–259.
  9. R. Padoan, T. A. G. Steemers, M. E. Klein, B. J. Aalderink, and G. de Bruin, “Quantitative hyperspectral imaging of historical documents: technique and applications,” in 9th International Conference on NDT of Art (2008), pp. 25–30.
  10. E. Marengo, M. Manfredi, O. Zerbinati, E. Robotti, E. Mazzucco, F. Gosetti, G. Bearman, F. France, and P. Shor, “Technique based on LED multispectral imaging and multivariate analysis for monitoring the conservation state of the Dead Sea Scroll,” Anal. Chem. 83, 6609–6618 (2011). [CrossRef]
  11. R. Lu and Y. Peng, “Development of a multispectral imaging prototype for real-time detection of apple fruit firmness,” Opt. Eng. 46, 123201 (2007). [CrossRef]
  12. D. F. Barbin, G. ElMasry, D.-W. Sun, and P. Allen, “Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging,” Anal. Chim. Acta 719, 30–42 (2012). [CrossRef]
  13. C. Bonifazzi, P. Carcagnì, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, and D. Bencini, “A scanning device for VIS–NIR multispectral imaging of paintings,” J. Opt. A Pure Appl. Opt. 10, 064011 (2008).
  14. M. Vilaseca, J. Pujol, M. Arjona, and M. de Lasarte, “Multispectral system for reflectance reconstruction in the near-infrared region,” Appl. Opt. 45, 4241–4253 (2006). [CrossRef]
  15. L. Kong, D. Yi, S. Sprigle, F. Wang, C. Wang, F. Liu, A. Adibi, and R. Tummala, “Single sensor that outputs narrowband multispectral images,” J. Biomed. Opt. 15, 010502 (2010). [CrossRef]
  16. S. Mathews, “Design and fabrication of a low-cost, multispectral imaging system,” Appl. Opt. 47, F71–F76 (2008). [CrossRef]
  17. J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002). [CrossRef]
  18. C. D. Tran, “Principles, instrumentation, and applications of infrared multispectral imaging, an overview,” Anal.Lett. Part B 38, 735–752 (2005).
  19. M. Brydegaard, A. Merdasa, H. Jayaweera, J. Ålebring, and S. Svanberg, “Versatile multispectral microscope based on light emitting diodes,” Rev. Sci. Instrum. 82, 123106 (2011). [CrossRef]
  20. D. Kapsokalyvas, N. Bruscino, D. Alfieri, V. de Giorgi, G. Cannarozzo, R. Cicchi, D. Massi, N. Pimpinelli, and F. S. Pavone, “Spectral morphological analysis of skin lesions with a polarization multispectral dermoscope,” Opt. Express 21, 4826–4840 (2013). [CrossRef]
  21. L. Fauch, E. Nippolainen, and A. A. Kamshilin, “Accuracy of the reflectance spectrum recovery in a light-emitting diode-based multispectral imaging system,” Opt. Eng. 51, 053201 (2012). [CrossRef]
  22. J. Li and R. K. Y. Chan, “Toward a UV-visible-near-infrared hyperspectral imaging platform for fast multiplex reflection spectroscopy,” Opt. Lett. 35, 3330–3332 (2010). [CrossRef]
  23. J. K. Delaney, J. G. Zeibel, M. Thoury, R. Littleton, M. Palmer, K. M. Morales, E. R. de la Rie, and A. Hoenigswald, “Visible and infrared imaging spectroscopy of Picasso’s Harlequin musician: mapping and identification of artist materials in situ,” Appl. Spectrosc. 64, 584–594 (2010). [CrossRef]
  24. H.-L. Shen, J. H. Xin, and S.-J. Shao, “Improved reflectance reconstruction for multispectral imaging by combining different techniques,” Opt. Express 15, 5531–5536 (2007). [CrossRef]
  25. H. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. 26, 508–517 (1978). [CrossRef]
  26. J. Kiusalaas, Numerical Methods in Engineering with MATLAB (Cambridge University, 2005).
  27. M. Melgosa, A. Trémeau, and G. Cui, “Colour difference evaluation,” in Advanced Color Image Processing and Analysis, C. Fernandez-Maloigne, ed. (Springer, 2013), pp. 65–85.
  28. G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations,” Color Res. Appl. 30, 21–30 (2005). [CrossRef]
  29. M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001). [CrossRef]
  30. J. Hernández-Andrés, J. Romero, and R. L. Lee, “Colorimetric and spectroradiometric characteristics of narrow-field-of-view clear skylight in Granada, Spain.,” J. Opt. Soc. Am. A 18, 412–420 (2001). [CrossRef]
  31. F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparative study of metrics for spectral match quality,” in Proceedings of the First European Conference on Colour in Graphics, Imaging and Vision (2002), pp. 492–496.
  32. A. Kimachi, H. Ikuta, Y. Fujiwara, M. Masumoto, and H. Matsuyama, “Spectral matching imager using amplitude-modulation-coded multispectral light-emitting diode illumination,” Opt. Eng. 43, 975–985 (2004). [CrossRef]
  33. T. Nägele, “White light LEDs—importance of accepted measurement standards,” LED Prof. Rev. (10) 22–26 (2008).
  34. Ó. Martínez, M. Vilaseca, M. Arjona, C. Pizarro, and J. Pujol, “Use of light-emitting diodes in multispectral systems design: variability of spectral power distribution according to angle and time of usage,” J. Imaging Sci. Technol. 55, 050501 (2011). [CrossRef]
  35. M. de Lasarte, J. Pujol, M. Arjona, and M. Vilaseca, “Optimized algorithm for the spatial nonuniformity correction of an imaging system based on a charge-coupled device color camera,” Appl. Opt. 46, 167–174 (2007). [CrossRef]
  36. N. Shimano, K. Terai, and M. Hironaga, “Recovery of spectral reflectances of objects being imaged by multispectral cameras,” J. Opt. Soc. Am. A 24, 3211–3219 (2007). [CrossRef]
  37. R. Shrestha, A. Mansouri, and J. Y. Hardeberg, “Multispectral imaging using a stereo camera: concept, design and assessment,” EURASIP J. Adv. Signal Process. 2011, 57–71 (2011). [CrossRef]
  38. K. Barnard and B. Funt, “Camera characterization for color research,” Color Res. Appl. 27, 152–163 (2002). [CrossRef]
  39. J. Sarvaiya, S. Patnaik, and K. Kothari, “Image registration using log polar transform and phase correlation to recover higher scale,” J. Pattern Recogn. Res. 7, 90–105 (2012).
  40. R. C. Hardie, M. M. Hayat, E. Armstrong, and B. Yasuda, “Scene-based nonuniformity correction with video sequences and registration,” Appl. Opt. 39, 1241–1250 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited