OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 14 — May. 10, 2014
  • pp: 3142–3146

Approach to visualization of and optical sensing by Bloch surface waves in noble or base metal-based plasmonic photonic crystal slabs

A. V. Baryshev and A. M. Merzlikin  »View Author Affiliations


Applied Optics, Vol. 53, Issue 14, pp. 3142-3146 (2014)
http://dx.doi.org/10.1364/AO.53.003142


View Full Text Article

Enhanced HTML    Acrobat PDF (509 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Bloch surface wave resonance (SWR) was visualized with the aid of plasmon absorption in a dielectric/metal/dielectric sandwich terminating a one-dimensional photonic crystal (PhC). An SWR peak in calculated spectra of such a plasmonic photonic crystal (PPhC) slab comprising a noble or base metal layer was demonstrated to be sensitive to a negligible variation of refractive index of a medium adjoining to the slab. The considered structure of PPhC slabs can be of practical importance because the metal layer is protected by a capping dielectric layer from contact with analytes and, consequently, from deterioration. We found that, in case of PPhC slabs, gold (the key element of the surface plasmon resonance-based biosensors) can be replaced by other metals. The PPhC-based sensors can be low-cost, reusable, and robust sensors having a sensitivity surpassing that of the known optical sensors.

© 2014 Optical Society of America

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 26, 2013
Revised Manuscript: February 17, 2014
Manuscript Accepted: March 24, 2014
Published: May 9, 2014

Citation
A. V. Baryshev and A. M. Merzlikin, "Approach to visualization of and optical sensing by Bloch surface waves in noble or base metal-based plasmonic photonic crystal slabs," Appl. Opt. 53, 3142-3146 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-14-3142


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Wulfkuhle, L. A. Liotta, and E. F. Petricoin, “Proteomic applications for the early detection of cancer,” Nat. Rev. Cancer 3, 267–275 (2003).
  2. P. J. Nestor, P. Scheltens, and J. R. Hodges, “Advances in the early detection of Alzheimer’s disease,” Nat. Rev. Neurosci. 10, S34–S41 (2004). [CrossRef]
  3. C. R. Taitt, J. P. Golden, Y. S. Shubin, L. C. Shriver-Lake, K. E. Sapsford, A. Rasooly, and F. S. Ligler, “A portable array biosensor for detecting multiple analytes in complex samples,” Microb. Ecol. 47, 175–185 (2004). [CrossRef]
  4. A. Patton, M. C. Mullenix, S. J. Swanson, and E. Koren, “An acid dissociation bridging ELISA for detection of antibodies directed against therapeutic proteins in the presence of antigen,” J. Immunol. Methods 304, 189–195 (2005). [CrossRef]
  5. A. Szabo, L. Stolz, and R. Granzow, “Surface plasmon resonance and its use in biomolecular interaction analysis (BIA),” Curr. Opin. Struct. Biol. 5, 699–705 (1995). [CrossRef]
  6. J. A. Lofgren, S. Dhandapani, J. J. Pennucci, C. M. Abbott, D. T. Mytych, A. Kaliyaperumal, S. J. Swanson, and M. C. Mullenix, “Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab,” J. Immunol. 178, 7467–7472 (2007).
  7. J. Homola, Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors (Springer-Verlag, 2006).
  8. G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038–2046 (2002). [CrossRef]
  9. M. Piliarik, L. Párová, and J. Homola, “High-throughput SPR sensor for food safety,” Biosens. Bioelectron. 24, 1399–1404 (2009). [CrossRef]
  10. C. M. Wu and M. C. Pao, “Sensitivity-tunable optical sensors based on surface plasmon resonance and phase detection,” Opt. Express 12, 3509–3514 (2004). [CrossRef]
  11. I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators, B 54, 98–105 (1999). [CrossRef]
  12. F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron. 24, 2100–2105 (2009). [CrossRef]
  13. C. Thirstrup and W. Zong, “Data analysis for surface plasmon resonance sensors using dynamic baseline algorithm,” Sens. Actuators, B 106, 796–802 (2005). [CrossRef]
  14. T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuators, B 91, 266–274 (2003). [CrossRef]
  15. M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24, 3430–3435 (2009). [CrossRef]
  16. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505–16517 (2009). [CrossRef]
  17. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54, 3–15 (1999). [CrossRef]
  18. G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators 29, 31–36 (1995). [CrossRef]
  19. H. Raether, Surface Plasmons (Springer, 1988).
  20. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [CrossRef]
  21. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978). [CrossRef]
  22. W. M. Robertson and M. S. May, “Surface electromagnetic waves on one-dimensional photonic band gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999). [CrossRef]
  23. V. N. Konopsky and E. V. Alieva, “A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index,” Biosens. Bioelectron. 25, 1212–1216 (2010). [CrossRef]
  24. V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
  25. A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Efficiency of optical sensing by a plasmonic photonic-crystal slab,” J. Phys. D 46, 125107 (2013). [CrossRef]
  26. A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Plasmonic photonic-crystal slab as an ultrasensitive and robust optical biosensor,” Proc. SPIE 8632, 863209 (2013). [CrossRef]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1991).
  28. Landolt-Bornstein Database ( http://www.springermaterials.com ).
  29. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical tamm states in one-dimensional magnetophotonic structure,” Phys. Rev. Lett. 101, 113902 (2008). [CrossRef]
  30. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007). [CrossRef]
  31. F. Villa and J. A. Gaspar-Armenta, “Electromagnetic surface waves: photonic crystal-photonic crystal interface,” Opt. Commun. 223, 109–115 (2003). [CrossRef]
  32. A. Kavokin, I. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005). [CrossRef]
  33. A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006). [CrossRef]
  34. A. V. Baryshev, K. Kawasaki, P. B. Lim, and M. Inoue, “Interplay of surface resonances in one-dimensional plasmonic magnetophotonic crystal slabs,” Phys. Rev. B 85, 205130 (2012). [CrossRef]
  35. B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103, 061112 (2013). [CrossRef]
  36. V. N. Konopsky and E. V. Alieva, “Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface,” Phys. Rev. Lett. 97, 253904 (2006). [CrossRef]
  37. D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics 5, 601–616 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited