OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 14 — May. 10, 2014
  • pp: 3147–3156

Observation of the waveguide resonance in a periodically patterned high refractive index broadband antireflection coating

O. Stenzel, S. Wilbrandt, X. Chen, R. Schlegel, L. Coriand, A. Duparré, U. Zeitner, T. Benkenstein, and C. Wächter  »View Author Affiliations


Applied Optics, Vol. 53, Issue 14, pp. 3147-3156 (2014)
http://dx.doi.org/10.1364/AO.53.003147


View Full Text Article

Enhanced HTML    Acrobat PDF (1267 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Grating waveguide structures have been prepared by the deposition of a high refractive index broadband antireflection coating onto a patterned fused silica substrate. Aluminum oxide and hafnium oxide as well as mixtures thereof have been used as coating materials. Optical reflection measurements combined with atomic force microscopy have been used to characterize the structures. Upon illumination with a TE wave, the best structure shows a narrow reflection peak located at 633 nm at an incidence angle of about 17°. The peak reflectance of that sample accounts for more than 89%. Off-resonance interference structures appear strongly suppressed in the spectrum between 450 and 800 nm because of the characteristics of the designed antireflection layer. The structure thus possesses a notch filter spectral characteristic in a broad spectral range.

© 2014 Optical Society of America

OCIS Codes
(230.1950) Optical devices : Diffraction gratings
(310.1210) Thin films : Antireflection coatings
(310.2785) Thin films : Guided wave applications
(310.6188) Thin films : Spectral properties
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

History
Original Manuscript: February 3, 2014
Revised Manuscript: March 28, 2014
Manuscript Accepted: April 4, 2014
Published: May 9, 2014

Citation
O. Stenzel, S. Wilbrandt, X. Chen, R. Schlegel, L. Coriand, A. Duparré, U. Zeitner, T. Benkenstein, and C. Wächter, "Observation of the waveguide resonance in a periodically patterned high refractive index broadband antireflection coating," Appl. Opt. 53, 3147-3156 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-14-3147


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Macleod, Thin-Film Optical Filters, 4th ed. (CRC Press, 2010).
  2. R. W. Klopfenstein, “A transmission line taper of improved design,” Proc. IRE 44, 31–35 (1956). [CrossRef]
  3. E. B. Grann, M. G. Moharam, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A 12, 333–339 (1995). [CrossRef]
  4. A. V. Tikhonravov and J. A. Dobrowolski, “Quasi-optimal synthesis for antireflection coatings: a new method,” Appl. Opt. 32, 4265–4275 (1993). [CrossRef]
  5. J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35, 644–658 (1996). [CrossRef]
  6. R. Willey, “Refined criteria for estimating limits of broad-band AR coatings,” Proc. SPIE 5250, 393–399 (2004). [CrossRef]
  7. J. A. Dobrowolski, “Antireflection coatings: key optical components,” Proc. SPIE 5963, 596303 (2005). [CrossRef]
  8. T. V. Amotchkina, “Empirical expression for the minimum residual reflectance of normal- and oblique-incidence antireflection coatings,” Appl. Opt. 47, 3109–3113 (2008). [CrossRef]
  9. S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 19732–19742 (2010). [CrossRef]
  10. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993). [CrossRef]
  11. S. S. Wang and R. Magnusson, “Design of waveguide-grating filters with symmetrical line shapes and low sidebands,” Opt. Lett. 19, 919–921 (1994). [CrossRef]
  12. R. Magnusson and S. S. Wang, “Efficient bandpass reflection and transmission filters with low sidebands based on guided-mode resonance effects,” U.S. patent5,598,300 (5June1997).
  13. E. Popov, L. Mashew, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986). [CrossRef]
  14. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating–waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997). [CrossRef]
  15. Z. Hegedus and R. Netterfield, “Low sideband guided-mode resonant filter,” Appl. Opt. 39, 1469–1473 (2000). [CrossRef]
  16. P. S. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83, 3248–3250 (2003). [CrossRef]
  17. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Normally incident resonant grating reflection filters for efficient narrow-band spectral filtering of finite beams,” J. Opt. Soc. Am. A 18, 2109–2120 (2001). [CrossRef]
  18. A. Sentenac and A. Fehrembach, “Angular tolerant resonant grating filters under oblique incidence,” J. Opt. Soc. Am. A 22, 475–480 (2005). [CrossRef]
  19. H. Thiele, G. Niederer, W. Nakagawa, and H. P. Herzig, “Design and characterization of a tunable polarization-independent resonant grating filter,” Opt. Express 13, 2196–2200 (2005). [CrossRef]
  20. X. Fu, K. Yi, J. Shao, and Z. Fan, “Nonpolarizing guided-mode resonance filter,” J. Opt. Soc. Am. A 34, 124–126 (2009).
  21. T. Clausnitzer, A. V. Tishchenko, E. Kley, H. Fuchs, D. Schelle, and U. Kroll, “Narrowband, polarization-independent free-space wave notch filter,” J. Opt. Soc. Am. A 22, 2799–2803 (2005). [CrossRef]
  22. E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, C. Dupuis, S. Collin, F. Pardo, R. Haidar, and J. Pelouard, “Free-standing guided-mode resonance band-pass filters: from 1D to 2D structures,” Opt. Express 20, 13082–13090 (2012). [CrossRef]
  23. O. Stenzel, “Resonant reflection and absorption in grating waveguide structures,” Proc. SPIE 5355, 1–13 (2004). [CrossRef]
  24. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, N. Kaiser, O. Stenzel, S. Wilbrandt, and D. Gäbler, “New optimisation algorithm for the synthesis of rugate optical coatings,” Appl. Opt. 45, 1515–1524 (2006). [CrossRef]
  25. A. Debnath, S. Kumar, D. V. Udupa, and N. K. Sahoo, “Design of narrow band notch filter based on guided mode resonance effect in thin film layers,” Proc. AIP 1451, 301–303 (2012). [CrossRef]
  26. K. Hehl and J. Bischoff, UNIGIT grating solver software (2001), http://www.unigit.com/ .
  27. O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Prax. 21, 15–23 (2009).
  28. S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited