OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 14 — May. 10, 2014
  • pp: 3157–3163

Experimental verification of compressive reflectance field acquisition

Yusuke Tampa, Ryoichi Horisaki, and Jun Tanida  »View Author Affiliations

Applied Optics, Vol. 53, Issue 14, pp. 3157-3163 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate compressive sensing (CS) of the eight-dimensional reflectance field (RF), which describes spatial and angular information of light rays toward and from an object. The RF is also known as the bidirectional scattering surface reflectance distribution function. In this method, incident rays and reflected rays to/from the object are modulated by variable coding masks, and the modulated rays are multiplexed onto an image sensor. The images captured with multiple mask patterns are decoded by a CS algorithm. The RF of the object was successfully reconstructed from less than half of the number of measurements required with conventional methods.

© 2014 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(290.1483) Scattering : BSDF, BRDF, and BTDF
(110.1758) Imaging systems : Computational imaging

ToC Category:
Imaging Systems

Original Manuscript: December 3, 2013
Revised Manuscript: April 22, 2014
Manuscript Accepted: April 22, 2014
Published: May 9, 2014

Yusuke Tampa, Ryoichi Horisaki, and Jun Tanida, "Experimental verification of compressive reflectance field acquisition," Appl. Opt. 53, 3157-3163 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Szeliski, Computer Vision: Algorithms and Applications, 1st ed. (Springer-Verlag, 2010).
  2. H. Shum and S. B. Kang, “Review of image-based rendering techniques,” Proc. SPIE 4067, 2 (2000). [CrossRef]
  3. M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 31–42.
  4. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992). [CrossRef]
  5. A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameterized light fields,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2000), pp. 297–306.
  6. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (Stanford University, 2005).
  7. V. Masselus, P. Peers, P. Dutré, and Y. D. Willems, “Relighting with 4D incident light fields,” ACM Trans. Graph. 22, 613–620 (2003). [CrossRef]
  8. P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar, “Acquiring the reflectance field of a human face,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2000), pp. 145–156.
  9. R. Horisaki, Y. Tampa, and J. Tanida, “Compressive reflectance field acquisition using confocal imaging with variable coded apertures,” in Computational Optical Sensing and Imaging (Optical Society of America, 2012), paper CTu3B.4.
  10. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001). [CrossRef]
  11. B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005). [CrossRef]
  12. A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” ACM Trans. Graph. 26, 69 (2007). [CrossRef]
  13. F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt. 4, 767–775 (1965). [CrossRef]
  14. R. Horisaki and J. Tanida, “Reflectance field display,” Opt. Express 21, 11181–11186 (2013). [CrossRef]
  15. H. Li, S. C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Proc. SPIE 5878, 221–231 (2005).
  16. G. Müller, G. H. Bendels, and R. Klein, “Rapid synchronous acquisition of geometry and appearance of cultural heritage artefacts,” in Proceedings of the 6th International Conference on Virtual Reality, Archaeology and Intelligent Cultural Heritage (Eurographics Association, 2005), pp. 13–20.
  17. Y. Mukaigawa, K. Sumino, and Y. Yagi, “Rapid BRDF measurement using an ellipsoidal mirror and a projector,” IPSJ Trans. Comput. Vis. Appl. 1, 21–32 (2009).
  18. G. Garg, E.-V. Talvala, M. Levoy, and H. P. A. Lensch, “Symmetric photography: exploiting data-sparseness in reflectance fields,” in Rendering Techniques 2006: Eurographics Symposium on Rendering, T. Akenine-Möller and W. Heidrich, eds. (Eurographics Association, 2006), pp. 251–262.
  19. M. Levoy, Z. Zhang, and I. Mcdowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235, 144–162 (2009). [CrossRef]
  20. S. Tagawa, Y. Mukaigawa, and Y. Yagi, “8-D reflectance field for computational photography,” in Proceedings of the International Conference on Pattern Recognition (IEEE, 2012), pp. 2181–2185.
  21. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006). [CrossRef]
  22. E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008). [CrossRef]
  23. R. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–121 (2007). [CrossRef]
  24. S. D. Babacan, R. Ansorge, M. Luessi, R. Molina, and A. K. Katsaggelos, “Compressive sensing of light fields,” in IEEE International Conference on Image Processing (IEEE, 2009), pp. 2313–2316.
  25. A. Ashok and M. A. Neifeld, “Compressive light field imaging,” Proc. SPIE 7690, 76900Q (2010). [CrossRef]
  26. R. Horisaki and J. Tanida, “Full-resolution light-field single-shot acquisition with spatial encoding,” in Computational Optical Sensing and Imaging (Optical Society of America, 2011), p. CTuB5.
  27. K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2013), pp. 1–11.
  28. P. Peers, D. K. Mahajan, B. Lamond, A. Ghosh, W. Matusik, R. Ramamoorthi, and P. Debevec, “Compressive light transport sensing,” ACM Trans. Graph. 28, 1–18 (2009). [CrossRef]
  29. J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited