OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 15 — May. 20, 2014
  • pp: 3262–3266

Frequency doubling of a passively mode-locked monolithic distributed Bragg reflector diode laser

D. Jedrzejczyk, T. Prziwarka, A. Klehr, O. Brox, H. Wenzel, K. Paschke, and G. Erbert  »View Author Affiliations

Applied Optics, Vol. 53, Issue 15, pp. 3262-3266 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (624 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, frequency doubling of a passively mode-locked 3.5 mm long monolithic distributed Bragg reflector diode laser is investigated experimentally. At 1064 nm, optical pulses with a duration of 12.4 ps are generated at a repetition rate of 13 GHz and a peak power of 825 mW, resulting in an average power of 133 mW. Second-harmonic generation is carried out in a periodically poled MgO-doped LiNbO3 ridge waveguide at a normalized nonlinear conversion efficiency of 930%/W. A maximum average second-harmonic power of 40.9 mW, corresponding to a pulse energy of 3.15 pJ, is reached in the experiment at an opto-optical conversion efficiency of 30.8%. The normalized nonlinear conversion efficiency in mode-locked operation is more than 2 times larger compared to continuous-wave operation.

© 2014 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7300) Lasers and laser optics : Visible lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 12, 2013
Revised Manuscript: April 4, 2014
Manuscript Accepted: April 8, 2014
Published: May 16, 2014

D. Jedrzejczyk, T. Prziwarka, A. Klehr, O. Brox, H. Wenzel, K. Paschke, and G. Erbert, "Frequency doubling of a passively mode-locked monolithic distributed Bragg reflector diode laser," Appl. Opt. 53, 3262-3266 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Goldberg and D. Mehuys, “Blue-light intensity modulation in a frequency-doubled tapered amplifier mode locked laser,” Electron. Lett. 30, 1296–1297 (1994). [CrossRef]
  2. H. Wenzel, S. Schwertfeger, A. Klehr, D. Jedrzejczyk, T. Hoffmann, and G. Erbert, “High peak power optical pulses generated with a monolithic master-oscillator power amplifier,” Opt. Lett. 37, 1826–1828 (2012). [CrossRef]
  3. O. Brox, T. Prziwarka, A. Klehr, F. Bugge, M. Matalla, H. Wenzel, and G. Erbert, “Integrated 13  Ghz ps-pulse source at 1064  nm,” Semicond. Sci. Technol. 28, 045015 (2013). [CrossRef]
  4. T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett. 40, 1359–1361 (2004). [CrossRef]
  5. , “Lasers and laser-related equipment—Test methods for laser beam widths, divergence angles and beam propagation ratios—Part 1: stigmatic and simple astigmatic beams,” 2005.
  6. D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012). [CrossRef]
  7. H. Ishizuki, T. Suhara, and H. Nishihara, “Numerical analysis of ultra-short pulse wavelength conversion characteristics of LiNbO3 waveguide nonlinear-optic devices,” Electron. Comm. Jpn. Pt. II 86, 11–20 (2003).
  8. S. Helmfrid and G. Arvidsson, “Second-harmonic generation in quasi-phase-matching waveguides with a multimode pump,” J. Opt. Soc. Am. B 8, 2326–2330 (1991). [CrossRef]
  9. Y. Qu and S. Singh, “Second-harmonic generation and photon bunching in multimode laser beams,” Phys. Rev. A 47, 3259–3263 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited