OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 15 — May. 20, 2014
  • pp: 3318–3327

Variation of spectral properties of dielectric ionic crystal in the terahertz range due to the polariton absorption

Igor V. Dzedolik and Vladislav Pereskokov  »View Author Affiliations

Applied Optics, Vol. 53, Issue 15, pp. 3318-3327 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (508 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dispersion equations for polariton waves in dielectric ionic crystal with the absorption are obtained. The self-consistent solutions of the system of Maxwell electromagnetic field equations and the equations of motion of ions have been used. The elastic and absorption properties of the crystal are taken into account in the ion equations of motion. It is shown that the separated equations of motion for positive and negative ions allow obtaining all branches of phonon and polariton spectrum by the example of the ionic crystal of cubic symmetry at the terahertz range. It has been shown that the variation of absorption in the crystal leads to changing of the character of spectrum branch and the polariton velocities.

© 2014 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.4760) Materials : Optical properties
(260.1180) Physical optics : Crystal optics
(300.6170) Spectroscopy : Spectra

ToC Category:
Physical Optics

Original Manuscript: January 29, 2014
Revised Manuscript: March 26, 2014
Manuscript Accepted: April 17, 2014
Published: May 20, 2014

Igor V. Dzedolik and Vladislav Pereskokov, "Variation of spectral properties of dielectric ionic crystal in the terahertz range due to the polariton absorption," Appl. Opt. 53, 3318-3327 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  2. H. Inoue, K. Katayma, Q. Shen, T. Toyoda, and K. Nelson, “Terahertz reflection response measurement using a phonon polariton wave,” J. Appl. Phys. 105, 054902 (2009). [CrossRef]
  3. R. H. Poolman, E. A. Muljarov, and A. L. Ivanov, “Terahertz response of acoustically driven optical phonons,” Phys. Rev. B 81, 245208 (2010). [CrossRef]
  4. M. Geiser, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Room temperature terahertz polariton emitter,” Appl. Phys. Lett. 101, 141118 (2012). [CrossRef]
  5. M. F. Pereira and I. A. Faragai, “Coupling of THz radiation with intervalence band transitions in microcavities,” Opt. Express 22, 3439–3446 (2014). [CrossRef]
  6. C. Kittel, Quantum Theory of Solids (Wiley, 1963).
  7. R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, 1969).
  8. A. S. Davydov, Solid State Physics (Nauka, 1976) (in Russian).
  9. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons (Springer, 1984).
  10. E. L. Albuquerque and M. G. Cottam, Polaritons in Periodic and Quasiperiodic Structures (Elsevier, 2004).
  11. I. V. Dzedolik, Polaritons in Optical Fibers and Dielectric Resonators (DIP, 2007) (in Russian).
  12. W.-C. Wang and D.-M. Hwang, “Raman scattering by polariton in potassium bromate crystals,” Chin. J. Phys. 15, 147–155 (1977).
  13. V. S. Podolsky, L. I. Deych, and A. A. Lisyansky, “Local polariton states in impure ionic crystals,” Phys. Rev. B 57, 5168–5176 (1998). [CrossRef]
  14. S. Kojima, N. Tsumura, M. W. Takeda, and S. Nishizawa, “Far-infrared phonon-polariton dispersion probe by terahertz time-domain spectroscopy,” Phys. Rev. B 67, 035102 (2003). [CrossRef]
  15. Z. Qi, Z.-Q. Shen, C.-P. Huang, S.-N. Zhu, and Y.-Y. Zhu, “Phonon polaritons in a nonaxial aligned piezoelectric superlattice,” J. Appl. Phys. 105, 074102 (2009). [CrossRef]
  16. I. Carusotto, T. Voltz, and A. Imamoglu, “Feshbach blockade: single-photon nonlinear optics using resonantly enhanced cavity polariton scattering from biexciton states,” Europhys. Lett. 90, 37001 (2010). [CrossRef]
  17. W.-C. Bai, H. Zhang, L. Jiang, H.-Z. Zhang, and L.-Q. Zhang, “Theoretical investigation of phonon–polariton modes in undoped and ion-doped PPLN crystals,” Solid State Commun. 151, 1261–1265 (2011). [CrossRef]
  18. I. V. Dzedolik, Electromagnetic Field in Active and Passive Media (DIP, 2012) (in Russian).
  19. I. V. Dzedolik and O. Karakchieva, “Polariton spectrum in nonlinear dielectric medium,” Appl. Opt. 52, 3073–3078 (2013). [CrossRef]
  20. I. V. Dzedolik and O. Karakchieva, “Control of polariton spectrum in bigyrotropic medium,” Appl. Opt. 52, 6112–6118 (2013). [CrossRef]
  21. C. Kittel, Introduction to Solid State Physics (Wiley, 1962).
  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics. V. 2. The Classical Theory of Fields (Nauka, 1988) (in Russian).
  23. G. A. Korn and T. M. Korn, Mathematical Handbook (McGraw-Hill, 1968).
  24. J. A. Reissland, The Physics of Phonons (Wiley, 1973).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited