OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 16 — Jun. 1, 2014
  • pp: 3388–3392

Efficient frequency doubling at 399  nm

Marco Pizzocaro, Davide Calonico, Pablo Cancio Pastor, Jacopo Catani, Giovanni A. Costanzo, Filippo Levi, and Luca Lorini  »View Author Affiliations


Applied Optics, Vol. 53, Issue 16, pp. 3388-3392 (2014)
http://dx.doi.org/10.1364/AO.53.003388


View Full Text Article

Enhanced HTML    Acrobat PDF (544 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a reliable, high-power, and narrow-linewidth laser source at 399 nm, which is useful for cooling and trapping of ytterbium atoms. A continuous-wave titanium-sapphire laser at 798 nm is frequency doubled using a lithium triborate crystal in an enhancement cavity. Up to 1.0 W of light at 399 nm has been obtained from 1.3 W of infrared light, with an efficiency of 80%.

© 2014 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(300.6210) Spectroscopy : Spectroscopy, atomic
(140.3515) Lasers and laser optics : Lasers, frequency doubled
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 6, 2014
Revised Manuscript: April 22, 2014
Manuscript Accepted: April 22, 2014
Published: May 22, 2014

Citation
Marco Pizzocaro, Davide Calonico, Pablo Cancio Pastor, Jacopo Catani, Giovanni A. Costanzo, Filippo Levi, and Luca Lorini, "Efficient frequency doubling at 399  nm," Appl. Opt. 53, 3388-3392 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-16-3388


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013). [CrossRef]
  2. D. DeMille, “Parity nonconservation in the 6s21s0→6s5d3D1 transition in atomic ytterbium,” Phys. Rev. Lett. 74, 4165–4168 (1995). [CrossRef]
  3. Y. Takasu, K. Maki, K. Komori, T. Takano, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi, “Spin-singlet Bose-Einstein condensation of two-electron atoms,” Phys. Rev. Lett. 91, 040404 (2003). [CrossRef]
  4. T. Fukuhara, Y. Takasu, M. Kumakura, and Y. Takahashi, “Degenerate Fermi gases of ytterbium,” Phys. Rev. Lett. 98, 030401 (2007). [CrossRef]
  5. G. Pagano, M. Mancini, G. Cappellini, P. Lombardi, F. Schafer, H. Hu, X.-J. Liu, J. Catani, C. Sias, M. Inguscio, and L. Fallani, “A one-dimensional liquid of fermions with tunable spin,” Nat. Phys. 10, 198–201 (2014). [CrossRef]
  6. K. Honda, Y. Takasu, T. Kuwamoto, M. Kumakura, Y. Takahashi, and T. Yabuzaki, “Optical dipole force trapping of a fermion-boson mixture of ytterbium isotopes,” Phys. Rev. A 66, 021401 (2002). [CrossRef]
  7. D. Hayes, P. S. Julienne, and I. H. Deutsch, “Quantum logic via the exchange blockade in ultracold collisions,” Phys. Rev. Lett. 98, 070501 (2007). [CrossRef]
  8. C. Y. Park and T. H. Yoon, “Efficient magneto-optical trapping of Yb atoms with a violet laser diode,” Phys. Rev. A 68, 055401 (2003). [CrossRef]
  9. C. Adams and A. Ferguson, “Tunable narrow linewidth ultra-violet light generation by frequency doubling of a ring Ti:sapphire laser using lithium tri-borate in an external enhancement cavity,” Opt. Commun. 90, 89–94 (1992). [CrossRef]
  10. H. Kumagai, Y. Asakawa, T. Iwane, K. Midorikawa, and M. Obara, “Efficient frequency doubling of 1-W continuous-wave Ti:sapphire laser with a robust high-finesse external cavity,” Appl. Opt. 42, 1036–1039 (2003). [CrossRef]
  11. J. C. J. Koelemeij, W. Hogervorst, and W. Vassen, “High-power frequency-stabilized laser for laser cooling of metastable helium at 389  nm,” Rev. Sci. Instrum. 76, 033104 (2005).
  12. M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, and T. W. Hänsch, “750  mW continuous-wave solid-state deep ultraviolet laser source at the 253.7  nm transition in mercury,” Opt. Lett. 32, 955–957 (2007). [CrossRef]
  13. Y.-H. Cha, K.-H. Ko, G. Lim, J.-M. Han, H.-M. Park, T.-S. Kim, and D.-Y. Jeong, “Generation of continuous-wave single-frequency 1.5  W 378  nm radiation by frequency doubling of a Ti:sapphire laser,” Appl. Opt. 49, 1666–1670 (2010). [CrossRef]
  14. G. Ferrari, J. Catani, L. Fallani, G. Giusfredi, G. Schettino, F. Schäfer, and P. Cancio Pastor, “Coherent addition of laser beams in resonant passive optical cavities,” Opt. Lett. 35, 3105–3107 (2010). [CrossRef]
  15. R. L. Targat, J.-J. Zondy, and P. Lemonde, “75% efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247, 471–481 (2005). [CrossRef]
  16. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968). [CrossRef]
  17. W. P. Risk, T. R. Gosnell, and A. V. Nurmikko, Compact Blue-Green Lasers (Cambridge University, 2003).
  18. A. V. Smith, “SNLO nonlinear optics code,” 2009, http://www.as-photonics.com/SNLO .
  19. S. P. Velsko, M. Webb, L. Davis, and C. Huang, “Phase-matched harmonic generation in lithium triborate (LBO),” IEEE J. Quantum Electron. 27, 2182–2192 (1991). [CrossRef]
  20. E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO3 in an external cavity,” Opt. Lett. 16, 1400–1402 (1991). [CrossRef]
  21. T. Freegarde and C. Zimmermann, “On the design of enhancement cavities for second harmonic generation,” Opt. Commun. 199, 435–446 (2001). [CrossRef]
  22. T. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980). [CrossRef]
  23. M. Pizzocaro, F. Bregolin, D. Calonico, G. Costanzo, F. Levi, and L. Lorini, “Improved set-up for the ytterbium optical clock at INRIM,” in European Frequency and Time Forum International Frequency Control Symposium (EFTF/IFC) 2013 Joint (IEEE, 2013), pp. 379–382.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited