OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 16 — Jun. 1, 2014
  • pp: 3393–3398

Circularly polarized light with high degree of circularity and low azimuthal error sensitivity

Jose Luis Vilas, Eusebio Bernabeu, Luis Miguel Sanchez-Brea, and Rafael Espinosa-Luna  »View Author Affiliations

Applied Optics, Vol. 53, Issue 16, pp. 3393-3398 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (394 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The generation of circularly polarized light with a high circularity degree and low azimuthal error sensitivity was analyzed using a system composed by two waveplates. It is shown how the high circularity degree is achieved using a combination of a half- (λ/2) and a quarter- (λ/4) waveplate λ/2+λ/4 configuration. However, the lowest azimuthal sensitivity under small variations in the azimuths of the waveplates is obtained by employing a λ/4+λ/2 configuration. Analytical calculus particularized for quartz and MgF2 waveplates is presented.

© 2014 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(220.4830) Optical design and fabrication : Systems design
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

Original Manuscript: January 30, 2014
Revised Manuscript: April 15, 2014
Manuscript Accepted: April 15, 2014
Published: May 22, 2014

Jose Luis Vilas, Eusebio Bernabeu, Luis Miguel Sanchez-Brea, and Rafael Espinosa-Luna, "Circularly polarized light with high degree of circularity and low azimuthal error sensitivity," Appl. Opt. 53, 3393-3398 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. J. Yu, C. E. Lin, L. P. Yu, and C. Chou, “Paired circularly polarized heterodyne ellipsometer,” Appl. Opt. 48, 758–764 (2009). [CrossRef]
  2. V. Samkaran, “Comparison of polarized-light propagation in biological tissue and phantoms,” Opt. Lett. 24, 1044–1046 (1999).
  3. C. Wagenknecht, C. M. Li, A. Reingruber, X. H. Bao, A. Goebel, Y. A. Chen, Q. Zhang, K. Chen, and J. W. Pan, “Experimental demonstration of a heralded entanglement source,” Nat. Photonics 4, 549–552 (2010). [CrossRef]
  4. J. F. Sherson, H. Krauter, R. K. Olsson, B. Julsgaard, K. Hammerer, I. Cirac, and E. S. Polzik, “Quantum teleportation between light and matter,” Nature 443, 557–560 (2006). [CrossRef]
  5. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1987).
  6. S. Pancharatnam, “Achromatic combinations of birefringent plates, Part II. An achromatic quarter-wave plate,” Proc. Indian Acad. Sci. 41A, 137–144 (1955).
  7. P. Violino, “Polariseur circulaire réglable sur une large domaine de longueurs d’onde,” Rev. Optique 44, 109–114 (1965).
  8. R. Corbalan and E. Bernabeu, “On the obtaining circular polarization for each of the optical doublet Caesium lines with available commercial components,” Opt. Pura Apl. 5, 80–84 (1972).
  9. E. Bernabeu and J. Aporta, “On obtaining circularly polarized light,” Atti della Fondazione Giorgio Ronchi 2, 351–355 (1975).
  10. P. Hariharan, “Achromatic retarders using quartz and mica,” Meas. Sci. Technol. 6, 1078–1079 (1995). [CrossRef]
  11. P. Hariharan and D. Malacara, “A simple achromatic half-wave retarder,” J. Mod. Opt. 41, 15–18 (1994). [CrossRef]
  12. A. Saha, K. Bhattacharya, and A. K. Chakraborty, “Achromatic quarter-wave plate using crystalline quartz,” Appl. Opt. 51, 1976–1980 (2012). [CrossRef]
  13. J. L. Vilas, L. M. Sanchez-Brea, and E. Bernabeu, “Optimal achromatic wave retarders using two birefringent wave plates,” Appl. Opt. 52, 7078–7080 (2013). [CrossRef]
  14. X. Zhang, “Optimal achromatic wave retarders using two birefringent wave plates: comment,” Appl. Opt. 52, 7078–7080 (2013). [CrossRef]
  15. J. L. Vilas, L. M. Sanchez-Brea, and E. Bernabeu, “Optimal achromatic wave retarders using two birefringent wave plates: reply,” Appl. Opt. 52, 7081–7082 (2013). [CrossRef]
  16. X. M. Jin, Z. H. Yi, B. Yang, F. Zhou, T. Yang, and C.-Z. Peng, “Experimental quantum error detection,” Sci. Rep. 2, 626 (2012). [CrossRef]
  17. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996). [CrossRef]
  18. P. D. Hale and G. W. Day, “Stability of birefringent linear retarders (wave plates),” Appl. Opt. 27, 5146–5153 (1988). [CrossRef]
  19. J. B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006). [CrossRef]
  20. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23, 1980–1985 (1984). [CrossRef]
  21. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, in Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics, 3rd ed. (McGraw-Hill, 2009), Vol. 4.
  22. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999). [CrossRef]
  23. S. Chandrasekhar, “The dispersion and thermo-optic behaviour of vitreous silica,” Proc. Indian Acad. Sci. 34A, 275–282 (1951).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited