OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 16 — Jun. 1, 2014
  • pp: 3454–3458

Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high-quality factors

Tao Chen, Zhanghua Han, Jianjun Liu, and Zhi Hong  »View Author Affiliations

Applied Optics, Vol. 53, Issue 16, pp. 3454-3458 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (463 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report in this paper terahertz gas sensing using a simple 1D photonic crystal cavity. The resonant frequencies of the cavity depend linearly on the refractive index of the ambient gas, which can then be measured by monitoring the resonance shift. Although quite easy to manufacture, this cavity exhibits high-quality factors, facilitating the realization of high sensitivity in the gas refractive index sensing. In our experiment, 6% of the change of hydrogen concentration in air, which corresponds to a refractive index change of 1.4×105, can be steadily detected, and different gas samples can be easily identified. Our experimental results are consistent with the theoretically calculated spectral responses of the cavity using the transfer matrix method.

© 2014 Optical Society of America

OCIS Codes
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(160.5298) Materials : Photonic crystals
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Optical Devices

Original Manuscript: February 26, 2014
Revised Manuscript: April 24, 2014
Manuscript Accepted: April 25, 2014
Published: May 27, 2014

Tao Chen, Zhanghua Han, Jianjun Liu, and Zhi Hong, "Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high-quality factors," Appl. Opt. 53, 3454-3458 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002). [CrossRef]
  2. H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87, 241119 (2005). [CrossRef]
  3. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95, 171113 (2009). [CrossRef]
  4. T. Chen, P. Liu, J. Liu, and Z. Hong, “A terahertz photonic crystal cavity with high Q-factors,” Appl. Phys. B 115, 105–109 (2014). [CrossRef]
  5. F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31, 1118–1120 (2006). [CrossRef]
  6. H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010). [CrossRef]
  7. P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988). [CrossRef]
  8. C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989). [CrossRef]
  9. S. A. Harmon and R. A. Cheville, “Part-per-million gas detection from long-baseline THz spectroscopy,” Appl. Phys. Lett. 85, 2128–2130 (2004). [CrossRef]
  10. J. S. Melinger, Y. Yang, M. Mandehgar, and D. Grischkowsky, “THz detection of small molecule vapors in the atmospheric transmission windows,” Opt. Express 20, 6788–6807 (2012). [CrossRef]
  11. E. Gerecht, K. O. Douglass, and D. F. Plusquellic, “Chirped-pulse terahertz spectroscopy for broadband trace gas sensing,” Opt. Express 19, 8973–8984 (2011). [CrossRef]
  12. A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors 11, 6003–6014 (2011). [CrossRef]
  13. T. Yoshie, L. Tang, and S. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors 11, 1972–1991 (2011). [CrossRef]
  14. H. Němec, P. Kužel, L. Duvillaret, A. Pashkin, M. Dressel, and M. T. Sebastian, “Highly tunable photonic crystal filter for the terahertz range,” Opt. Lett. 30, 549–551 (2005). [CrossRef]
  15. C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010). [CrossRef]
  16. M. Bernier, F. Garet, E. Perret, L. Duvillaret, and S. Tedjini, “Terahertz encoding approach for secured chipless radio frequency identification,” Appl. Opt. 50, 4648–4655 (2011). [CrossRef]
  17. J. Li, “Terahertz wave narrow bandpass filter based on photonic crystal,” Opt. Commun. 283, 2647–2650 (2010). [CrossRef]
  18. J. He, P. Liu, Y. He, and Z. Hong, “Narrow bandpass tunable terahertz filter based on photonic crystal cavity,” Appl. Opt. 51, 776–779 (2012). [CrossRef]
  19. E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007). [CrossRef]
  20. J. Jágerská, H. Zhang, Z. Diao, N. L. Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett. 35, 2523–2525 (2010). [CrossRef]
  21. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16, 4296–4301 (2008). [CrossRef]
  22. S. Chopra, K. McGuire, N. Gothard, and A. M. Rao, “Selective gas detection using a carbon nanotube sensor,” Appl. Phys. Lett. 83, 2280–2282 (2003). [CrossRef]
  23. T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008). [CrossRef]
  24. W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008). [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited