OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 16 — Jun. 1, 2014
  • pp: 3540–3547

Phase retrieval applied to stellar occultation for asteroid silhouette characterization

Russell Trahan, III and David Hyland  »View Author Affiliations

Applied Optics, Vol. 53, Issue 16, pp. 3540-3547 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (622 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Here we expand on the current methods of characterizing small astronomical bodies, particularly asteroids, by viewing stellar occultation events. Stellar occultation has proven to be a viable method for determining the size of moons and asteroids; however, it comes with some limitations. In general the method does not consider or use all of the known diffraction effects that occur and thus provides a nominal radius—not a shape—of the occluder. We show that most stellar occultation events involving small near-Earth asteroids occur with low Fresnel numbers. This in effect renders the traditional methods useless to characterize the shape, because no sharp shadow exists. We show that using similar data collection to that of the traditional occultation method and inverting a Fresnel diffraction equation by a phase retrieval process can yield a complete reconstruction of the silhouette of the occluder. The effect of noise in the measurements is also discussed. A practical example applied to the asteroid 25143 Itokawa is shown.

© 2014 Optical Society of America

OCIS Codes
(040.1240) Detectors : Arrays
(100.5070) Image processing : Phase retrieval
(350.1260) Other areas of optics : Astronomical optics
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Imaging Systems

Original Manuscript: March 12, 2014
Revised Manuscript: April 28, 2014
Manuscript Accepted: April 28, 2014
Published: May 30, 2014

Russell Trahan and David Hyland, "Phase retrieval applied to stellar occultation for asteroid silhouette characterization," Appl. Opt. 53, 3540-3547 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. L. Elliot, M. J. Person, C. A. Zuluaga, A. S. Bosh, E. R. Adams, T. C. Brothers, A. A. S. Gulbis, S. E. Levine, M. Lockhart, A. M. Zangari, B. A. Babcock, K. DuPré, J. M. Pasachoff, S. P. Souza, W. Rosing, N. Secrest, L. Bright, E. W. Dunham, S. S. Sheppard, M. Kakkala, T. Tilleman, B. Berger, J. W. Briggs, G. Jacobson, P. Valleli, B. Volz, S. Rapoport, R. Hart, M. Brucker, R. Michel, A. Mattingly, L. Zambrano-Marin, A. W. Meyer, J. Wolf, E. V. Ryan, W. H. Ryan, K. Morzinsky, B. Grigsby, J. Brimacombe, D. Ragozzine, H. G. Montano, and A. Gilmore, “Size and albedo of Kuiper belt object 55636 from a stellar occultation,” Nature 465, 897–900 (2010). [CrossRef]
  2. B. Sicardy, A. Bellucci, E. Gendron, F. Lacombe, S. Lacour, J. Lecacheux, E. Lellouch, S. Renner, S. Pau, F. Roques, T. Widemann, F. Colas, F. Vachier, R. Vieira Martins, N. Ageorges, O. Hainaut, O. Marco, W. Beisker, E. Hummel, C. Feinstein, H. Levato, A. Maury, E. Frappa, B. Gaillard, M. Lavayssiere, M. Di Sora, F. Mallia, G. Masi, R. Behrend, F. Carrier, O. Mousis, P. Rousselot, A. Alvarez-Candal, D. Lazzaro, C. Veiga, A. H. Andrei, M. Assafin, D. N. da Silva Neto, C. Jacques, E. Pimentel, D. Weaver, J.-F. Lecampion, F. Doncel, T. Momiyama, and G. Tancredi, “Charon’s size and an upper limit on its atmosphere from a stellar occultation,” Nature 439, 52–54 (2006). [CrossRef]
  3. B. Sicardy, A. Brahic, C. Ferrari, D. Gautier, J. Lecacheux, E. Lellouch, F. Roques, J. E. Arlot, F. C. Colas, W. Thuillot, F. Sevre, J. L. Vidal, C. Blanco, S. Cristaldi, C. Buil, A. Klotz, and E. Thouvenot, “Probing Titan’s atmosphere by stellar occultation,” Nature 343, 350–353 (1990). [CrossRef]
  4. H. E. Schlichting, E. O. Ofek, M. Wenz, R. Sari, A. Gal-Yam, M. Livio, E. Nelan, and S. Zucker, “A single sub-kilometre Kuiper belt object from a stellar occultation in archival data,” Nature 462, 895–897 (2009). [CrossRef]
  5. F. Rogues, A. Doressoundiram, V. Dhillon, T. Marsh, S. Bickerton, J. J. Kavelaars, M. Moncuquet, M. Auvergne, I. Belskaya, M. Chevreton, F. Colas, A. Fernandez, A. Fitzsimmons, J. Lecacheux, O. Mousis, S. Pau, N. Peixinho, and G. P. Tozzi, “Exploration of the Kuiper Belt by high-precision photometric stellar occultations: first results,” Astron. J. 132, 819–822 (2006). [CrossRef]
  6. E. F. Young, “A Fourier optics method for calculating stellar occultation light curves by objects with thin atmospheres,” Astron. J. 749, 1–13 (2012). [CrossRef]
  7. F. Roques, M. Moncuquet, and B. Sicardy, “Stellar occultations by small bodies: diffraction effects,” Astron. J. 93, 1549–1558 (1987). [CrossRef]
  8. O. K. Ersoy, Diffraction, Fourier Optics and Imaging (Wiley-Interscience, 2007).
  9. R. E. English and N. George, “Diffraction patterns in the shadows of disks and obstacles,” Appl. Opt. 27, 1581–1587 (1988). [CrossRef]
  10. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University, 1997).
  11. D. Paganin, Coherent X-Ray Optics (Oxford Univerity, 2006).
  12. J. Komrska, “Simple derivation of formulas for Fraunhofer diffraction at polygonal apertures,” J. Opt. Soc. Am. 72, 1382–1384 (1982). [CrossRef]
  13. H. Altwaijry and D. Hyland, “Detection and characterization of near Earth asteroids using stellar occultation,” in AAS/AIAA Astrodynamics Specialist Conference, Hilton Head, South Carolina (2013), pp. 13–942.
  14. V. Laude, “Diffraction analysis of pixelated incoherent shadow casting,” Opt. Commun. 138, 394–402 (1997). [CrossRef]
  15. F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics, 3rd ed. (Pearson, 2014).
  16. M. Abramowitz and I. A. Stegun, “Error function and Fresnel integrals,” in Handbook of Mathematical Functions (Dover, 1972), pp. 300–302.
  17. “JAXA,” [Online]. Available: http://www.isas.jaxa.jp/j/snews/2005/1101_hayabusa.shtml . [Accessed 2014].
  18. R. H. Brown and R. Q. Twiss, “A new type of interferometer for use in radio astronomy,” Nature 178, 1046–1048 (1956). [CrossRef]
  19. R. H. Brown, “Stellar interferometer at Narrabri Observatory,” Nature 218, 637–641 (1968). [CrossRef]
  20. D. Dravins, S. LeBohec, H. Jensen, and P. Nunez, “Optical intensity interferometry with the Cherenkov Telescope Array,” Astroparticle Phys. 43, 331–347 (2013). [CrossRef]
  21. R. H. Brown and R. Q. Twiss, “The question of correlation between photons in coherent light rays,” Nature 178, 1447–1448 (1956). [CrossRef]
  22. R. Trahan and D. Hyland, “Mitigating the effect of noise in the hybrid input-output method of phase retrieval,” Appl. Opt. 52, 3031–3037 (2013). [CrossRef]
  23. J. R. Fienup and C. C. Wackerman, “Phase-retrieval stagnation problems and solutions,” J. Opt. Soc. Am. A 3, 1897–1907 (1986). [CrossRef]
  24. G. Liu, “Object reconstruction from noisy holograms: multiplicative noise model,” Opt. Commun. 79, 402–406 (1990). [CrossRef]
  25. L. J. Palumbo and A. M. Platzeck, “Diffraction by a circular aperture: a new approach,” J. Opt. Soc. Am. A 4, 839–842 (1987). [CrossRef]
  26. A. Borovol, E. Naats, U. Oppel, and I. Grishin, “Shape characterization of a large nonspherical particle by use of its Fraunhofer diffraction pattern,” Appl. Opt. 39, 1989–1997 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited