OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 16 — Jun. 1, 2014
  • pp: 3581–3586

Photonic crystal fiber based dual-wavelength Q-switched fiber laser using graphene oxide as a saturable absorber

H. Ahmad, M. R. K. Soltanian, C. H. Pua, M. Alimadad, and S. W. Harun  »View Author Affiliations


Applied Optics, Vol. 53, Issue 16, pp. 3581-3586 (2014)
http://dx.doi.org/10.1364/AO.53.003581


View Full Text Article

Enhanced HTML    Acrobat PDF (1349 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Q-switched dual-wavelength fiber laser with narrow channel spacing is proposed and demonstrated. The fiber laser is built around a 3 m long erbium doped fiber as the gain medium and a 10 cm long photonic crystal fiber (PCF) as the element used to generate the dual-wavelength output. The PCF has a solid core approximately 4.37 μm in diameter and is surrounded by microscopic air-holes with a diameter of about 5.06 μm each as well as a zero-dispersion wavelength of about 980 nm. A graphene oxide based saturable absorber is used to generate the desired pulsed output. At the maximum pump power of 72 mW the laser is capable of generating pulses with a repetition rate and pulse-width of 31.0 kHz and 7.0 μs, respectively, as well as an average output power and pulse energy of 0.086 mW and 2.8 nJ, respectively. The proposed fiber laser has substantial potential for use in applications that require longer duration pulsed outputs such as in range finding and terahertz radiation generation.

© 2014 Optical Society of America

OCIS Codes
(060.2410) Fiber optics and optical communications : Fibers, erbium
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3560) Lasers and laser optics : Lasers, ring
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 12, 2014
Revised Manuscript: April 10, 2014
Manuscript Accepted: April 30, 2014
Published: May 30, 2014

Citation
H. Ahmad, M. R. K. Soltanian, C. H. Pua, M. Alimadad, and S. W. Harun, "Photonic crystal fiber based dual-wavelength Q-switched fiber laser using graphene oxide as a saturable absorber," Appl. Opt. 53, 3581-3586 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-16-3581


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94  µm,” J. Endourol. 19, 25–31 (2005). [CrossRef]
  2. A. R. Grant, D. P. Holcomb, and T. H. Wood, “Pulsed Yb fiber laser for underwater communications,” in Applications of Lasers for Sensing and Free Space Communications (Optical Society of America, 2011).
  3. N. Nishizawa, “Wideband ultra-short pulse fiber lasers and their sensing applications,” in Optical Sensors (Optical Society of America, 2010).
  4. R. J. De Young and N. P. Barnes, “Profiling atmospheric water vapor using a fiber laser lidar system,” Appl. Opt. 49, 562–567 (2010). [CrossRef]
  5. Y. Tang, Y. Yang, J. Xu, and Y. Hang, “Passive Q-switching of short-length Tm3+-doped silica fiber lasers by polycrystalline Cr2+:ZnSe microchips,” Opt. Commun. 281, 5588–5591 (2008). [CrossRef]
  6. R. Koskinen, S. Suomalainen, J. Paajaste, S. Kivistö, M. Guina, O. Okhotnikov, and M. Pessa, “Highly nonlinear GaSb-based saturable absorber mirrors,” Proc. SPIE 73540, 73540G (2009). [CrossRef]
  7. D.-P. Zhou, L. Wei, B. Dong, and W.-K. Liu, “Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photon. Technol. Lett. 22, 9–11 (2010). [CrossRef]
  8. B. Dong, J. Hao, J. Hu, and C.-y. Liaw, “Short linear-cavity Q-switched fiber laser with a compact short carbon nanotube based saturable absorber,” Opt. Fiber Technol. 17, 105–107 (2011). [CrossRef]
  9. C. Liu, C. Ye, Z. Luo, H. Cheng, D. Wu, Y. Zheng, Z. Liu, and B. Qu, “High-energy passively Q-switched 2  μm Tm3+-doped double-clad fiber laser using graphene-oxide-deposited fiber taper,” Opt. Express 21, 204–209 (2013). [CrossRef]
  10. Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, and Z. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett. 35, 3709–3711 (2010). [CrossRef]
  11. J. Zhao, Y. Wang, S. Ruan, P. Yan, H. Zhang, Y. H. Tsang, J. Yang, and G. Huang, “Three operation regimes with an L-band ultrafast fiber laser passively mode-locked by graphene oxide saturable absorber,” J. Opt. Soc. Am. B 31, 716–722 (2014). [CrossRef]
  12. Z. Jun-Qing, W. Yong-Gang, Y. Pei-Guang, R. Shuang-Chen, C. Jian-Qun, D. Ge-Guo, Y. Yong-Qin, Z. Ge-Lin, W. Hui-Feng, L. Jie, and Y. H. Tsang, “Graphene-oxide-based Q-switched fiber laser with stable five-wavelength operation,” Chin. Phys. Lett. 29, 114206 (2012). [CrossRef]
  13. J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20, 478–480 (2008). [CrossRef]
  14. Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006). [CrossRef]
  15. D. Liu, N. Ngo, G. Ning, P. Shum, and S. Tjin, “Tunable microwave photonic notch filter using a dual-wavelength fiber laser with phase modulation,” Opt. Commun. 266, 240–248 (2006). [CrossRef]
  16. M. Y. Jeon, N. Kim, J. Shin, C. W. Lee, S.-P. Han, Y. A. Leem, D.-S. Yee, S. K. Noh, and K. H. Park, “Continuous terahertz wave emission using tunable dual-wavelength erbium-doped fiber laser,” in Infrared Millimeter and Terahertz Waves (IRMMW-THz), 2010 35th International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2010), pp. 1–2.
  17. J. Sierra-Hernandez, R. Rojas-Laguna, E. Vargas-Rodriguez, J. Estudillo-Ayala, R. Mata-Chavez, D. Jauregui-Vazquez, J. Hernandez-Garcia, J. Andrade-Lucio, and J. Gutierrez-Gutierrez, “A tunable multi-wavelength laser based on a Mach–Zehnder interferometer with photonic crystal fiber,” Laser Phys. 23, 055105 (2013). [CrossRef]
  18. W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Switchable multi-wavelength fiber ring laser using a side-leakage photonic crystal fiber based filter,” Opt. Laser Technol. 44, 611–616 (2012). [CrossRef]
  19. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448, 457–460 (2007). [CrossRef]
  20. S. Park, K.-S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, and R. S. Ruoff, “Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking,” ACS Nano 2, 572–578 (2008). [CrossRef]
  21. H. Ahmad, A. Z. Zulkifli, Y. Y. Kiat, and S. W. Harun, “Q-switched fibre laser using 21  cm Bismuth-erbium doped fibre and graphene oxide as saturable absorber,” Opt. Commun. 310, 53–57 (2014). [CrossRef]
  22. X. Zhao, Z.-B. Liu, W.-B. Yan, Y. Wu, X.-L. Zhang, Y. Chen, and J.-G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98, 121905 (2011). [CrossRef]
  23. J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012). [CrossRef]
  24. K. Haubner, J. Murawski, P. Olk, L. M. Eng, C. Ziegler, B. Adolphi, and E. Jaehne, “The route to functional graphene oxide,” Chem. Phys. Chem. 11, 2131–2139 (2010). [CrossRef]
  25. C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. Novoselov, D. Basko, and A. Ferrari, “Raman spectroscopy of graphene edges,” Nano Lett. 9, 1433–1441 (2009). [CrossRef]
  26. L. Chang, S. Wu, S. Chen, and X. Li, “Preparation of graphene oxide–molecularly imprinted polymer composites via atom transfer radical polymerization,” J. Mater. Sci. 46, 2024–2029 (2011). [CrossRef]
  27. S. K. Bhadra and A. K. Ghatak, Guided Wave Optics and Photonic Devices (CRC Press, 2013).
  28. W. Chen, S. Lou, S. Feng, L. Wang, H. Li, T. Guo, and S. Jian, “Switchable multi-wavelength fiber ring laser based on a compact in-fiber Mach-Zehnder interferometer with photonic crystal fiber,” Laser Phys. 19, 2115–2119 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited