OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 16 — Jun. 1, 2014
  • pp: D1–D11

Standards for ultrashort-laser-pulse-measurement techniques and their consideration for self-referenced spectral interferometry

Michelle Rhodes, Günter Steinmeyer, and Rick Trebino  »View Author Affiliations


Applied Optics, Vol. 53, Issue 16, pp. D1-D11 (2014)
http://dx.doi.org/10.1364/AO.53.0000D1


View Full Text Article

Enhanced HTML    Acrobat PDF (1363 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Issues important for new ultrashort-pulse-measurement techniques include the generation of theoretical example traces for common pulses, validity ranges, ambiguities, coherent artifacts, device calibration sensitivity, iterative retrieval convergence, and feedback regarding measurement accuracy. Unfortunately, in the past, such issues have gone unconsidered, yielding long histories of unsatisfactory measurements. We review these issues here in the hope that future proposers of new techniques will consider them without delay, and, as an example, we address them for a relatively new technique: self-referenced spectral interferometry.

© 2014 Optical Society of America

OCIS Codes
(320.7100) Ultrafast optics : Ultrafast measurements
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

History
Original Manuscript: November 18, 2013
Revised Manuscript: February 19, 2014
Manuscript Accepted: February 20, 2014
Published: April 1, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics
FOCUS ON INST. RESEARCH AT GEORGIA TECH (INVITED ONLY) (2014) Applied Optics

Citation
Michelle Rhodes, Günter Steinmeyer, and Rick Trebino, "Standards for ultrashort-laser-pulse-measurement techniques and their consideration for self-referenced spectral interferometry," Appl. Opt. 53, D1-D11 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-16-D1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, and K. W. Wecht, “Two-photon excitation of fluorescence by picosecond light pulses,” Appl. Phys. Lett. 11, 216–218 (1967). [CrossRef]
  2. M. Maier, W. Kaiser, and J. A. Giordmaine, “Intense light bursts in the stimulated Raman effect,” Phys. Rev. Lett. 17, 1275–1277 (1966). [CrossRef]
  3. J. A. Armstrong, “Measurement of picosecond laser pulse widths,” Appl. Phys. Lett. 10, 16–18 (1967). [CrossRef]
  4. E. J. Akutowicz, “On the determination of the phase of a Fourier integral, I,” Trans. Am. Math. Soc. 83, 234–239 (1956).
  5. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2002).
  6. H. A. Pike and M. Hercher, “Basis for picosecond structure in mode-locked laser pulses,” J. Appl. Phys. 41, 4562–4565 (1970). [CrossRef]
  7. D. A. Berkley and G. J. Wolga, “Coherence studies of emission from a pulsed ruby laser,” Phys. Rev. Lett. 9, 479–482 (1962). [CrossRef]
  8. H. P. Weber, “Comments on the pulse width measurement with two-photon excitation of fluorescence,” Phys. Lett. A 27, 321–322 (1968). [CrossRef]
  9. J. R. Klauder, M. A. Duguay, J. A. Giordmaine, and S. L. Shapiro, “Correlation effects in the display of picosecond pulses by two-photon techniques,” Appl. Phys. Lett. 13, 174–176 (1968). [CrossRef]
  10. J. Catherall and G. New, “Role of spontaneous emission in the dynamics of mode locking by synchronous pumping,” IEEE J. Quantum Electron. 22, 1593–1599 (1986). [CrossRef]
  11. J. Q. Bi, W. Hodel, and H. P. Weber, “Numerical simulation of coherent photon seeding: a new technique to stabilize synchronously pumped mode-locked lasers,” Opt. Commun. 81, 408–418 (1991). [CrossRef]
  12. A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60  fs pulses,” Nat. Photonics 3, 729–731 (2009). [CrossRef]
  13. K. G. Wilcox and A. C. Tropper, “Comment on SESAM-free mode-locked semiconductor disk laser,” Laser Photon. Rev. 7, 422–423 (2013). [CrossRef]
  14. A. Hook and M. Karlsson, “Soliton instabilities and pulse compression in minimum dispersion fibers,” IEEE J. Quantum Electron. 30, 1831–1841 (1994). [CrossRef]
  15. B. Schenkel, R. Paschotta, and U. Keller, “Pulse compression with supercontinuum generation in microstructure fibers,” J. Opt. Soc. Am. B 22, 687–693 (2005). [CrossRef]
  16. M. Durand, A. Jarnac, A. Houard, Y. Liu, S. Grabielle, N. Forget, A. Durécu, A. Couairon, and A. Mysyrowicz, “Self-guided propagation of ultrashort laser pulses in the anomalous dispersion region of transparent solids: a new regime of filamentation,” Phys. Rev. Lett. 110, 115003 (2013). [CrossRef]
  17. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. Knight, W. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88, 173901 (2002). [CrossRef]
  18. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  19. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20  nJ,” Opt. Lett. 32, 2408–2410 (2007). [CrossRef]
  20. J. Buckley, F. Wise, F. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10  nJ,” Opt. Lett. 30, 1888–1890 (2005). [CrossRef]
  21. D. Côté and H. M. van Driel, “Period doubling of a femtosecond Ti:sapphire laser by total mode locking,” Opt. Lett. 23, 715–717 (1998). [CrossRef]
  22. Q. Xing, L. Chai, W. Zhang, and C.-Y. Wang, “Regular, period-doubling, quasi-periodic, and chaotic behavior in a self-mode-locked Ti:sapphire laser,” Opt. Commun. 162, 71–74 (1999). [CrossRef]
  23. R. A. Fisher and J. J. A. Fleck, “On the phase characteristics and compression of picosecond light pulses,” Appl. Phys. Lett. 15, 287–290 (1969). [CrossRef]
  24. L. Kornaszewski, G. Maker, G. Malcolm, M. Butkus, E. U. Rafailov, and C. J. Hamilton, “SESAM‐free mode‐locked semiconductor disk laser,” Laser Photonics Rev. 6, L20–L23 (2012). [CrossRef]
  25. L. Kornaszewski, G. Maker, G. Malcolm, M. Butkus, E. U. Rafailov, and C. Hamilton, “Reply to comment on SESAM‐free mode‐locked semiconductor disk laser,” Laser Photon. Rev. 7, 555–556 (2013). [CrossRef]
  26. J.-C. Diels, E. Van Stryland, and G. Benedict, “Generation and measurement of 200 femtosecond optical pulses,” Opt. Commun. 25, 93–96 (1978). [CrossRef]
  27. K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron. 32, 1253–1264 (1996). [CrossRef]
  28. D. N. Fittinghoff, K. W. DeLong, R. Trebino, and C. L. Ladera, “Noise sensitivity in frequency-resolved optical-gating measurements of ultrashort pulses,” J. Opt. Soc. Am. B 12, 1955–1967 (1995). [CrossRef]
  29. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002). [CrossRef]
  30. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998). [CrossRef]
  31. C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron. 35, 501–509 (1999). [CrossRef]
  32. G. Stibenz, C. Ropers, C. Lienau, C. Warmuth, A. Wyatt, I. Walmsley, and G. Steinmeyer, “Advanced methods for the characterization of few-cycle light pulses: a comparison,” Appl. Phys. B 83, 511–519 (2006). [CrossRef]
  33. J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37, 2874–2876 (2012). [CrossRef]
  34. M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013). [CrossRef]
  35. L. Gallmann, D. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, “Techniques for the characterization of sub-10-fs optical pulses: a comparison,” Appl. Phys. B 70, S67–S75 (2000). [CrossRef]
  36. T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Appl. Phys. B 99, 7–12 (2010). [CrossRef]
  37. C. Froehly, A. Lacourt, and J. C. Viénot, “Notions de réponse impulsionnelle et de fonction de transfert temporelles des pupilles optiques, justifications expérimentales et applications,” Nouv. Rev. Opt 4, 183–196 (1973). [CrossRef]
  38. A. Jullien, L. Canova, O. Albert, D. Boschetto, L. Antonucci, Y. H. Cha, J. P. Rousseau, P. Chaudet, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Spectral broadening and pulse duration reduction during cross-polarized wave generation: influence of the quadratic spectral phase,” Appl. Phys. B 87, 595–601 (2007). [CrossRef]
  39. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995). [CrossRef]
  40. A. Moulet, N. Forget, R. Herzog, S. Coudreau, and T. Oksenhendler, “Characterization and optimization of a femtosecond laser by self-referenced spectral interferometry,” presented at the 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 16–21 May2010.
  41. T. Oksenhendler, “Self-referenced spectral interferometry theory,” arXiv:1204.4949 (2012).
  42. M. Lai and J. C. Diels, “Complete diagnostic of ultrashort pulses without nonlinear process,” Opt. Commun. 88, 319–325 (1992). [CrossRef]
  43. V. Wong, R. J. Koshel, M. Beck, and I. A. Walmsley, “Measurement of the amplitude and phase of pulses from passively mode-locked lasers,” presented at the OE/LASE’93: Optics, Electro-Optics, & Laser Applications in Science & Engineering, 1993.
  44. J.-H. Chung and A. M. Weiner, “Ambiguity of ultrashort pulse shapes retrieved from the intensity autocorrelation and the power spectrum,” IEEE J. Sel. Top. Quantum Electron. 7, 656–666 (2001). [CrossRef]
  45. D. Keusters, H.-S. Tan, P. O’Shea, E. Zeek, R. Trebino, and W. S. Warren, “Relative-phase ambiguities in measurements of ultrashort pulses with well-separated multiple frequency components,” J. Opt. Soc. Am. B 20, 2226–2237 (2003). [CrossRef]
  46. L. Xu, E. Zeek, and R. Trebino, “Simulations of frequency-resolved optical gating for measuring very complex pulses,” J. Opt. Soc. Am. B 25, A70–A80 (2008). [CrossRef]
  47. Z. Wang, E. Zeek, R. Trebino, and P. Kvam, “Determining error bars in measurements of ultrashort laser pulses,” J. Opt. Soc. Am. B 20, 2400–2405 (2003). [CrossRef]
  48. Z. Wang, E. Zeek, R. Trebino, and P. Kvam, “Beyond error bars: understanding uncertainty in ultrashort-pulse frequency-resolved-optical-gating measurements in the presence of ambiguity,” Opt. Express 11, 3518–3527 (2003). [CrossRef]
  49. C. Dorrer, “Influence of the calibration of the detector on spectral interferometry,” J. Opt. Soc. Am. B 16, 1160–1168 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited