OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 17 — Jun. 10, 2014
  • pp: 3587–3592

Design of a GaP/Si composite waveguide for CW terahertz wave generation via difference frequency mixing

Kyosuke Saito, Tadao Tanabe, and Yutaka Oyama  »View Author Affiliations

Applied Optics, Vol. 53, Issue 17, pp. 3587-3592 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (469 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We design a GaP/Si composite waveguide to achieve efficient terahertz (THz) wave generation under collinear phase-matched difference frequency mixing (DFM) between near-infrared light sources. This waveguide structure provides a strong mode confinement of both near-infrared sources and THz wave, resulting in an efficient mode overlapping. The numerical results show that the waveguide can produce guided THz wave (5.93 THz) with a power conversion efficiency of 6.6×104W1. This value is larger than previously obtained with the bulk GaP crystal: 0.5×109W1 [J. Lightwave Technol. 27, 3057 (2009)]. Our proposed composite waveguide can be achieved by bridging the telecom wavelength and THz frequency region.

© 2014 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4223) Nonlinear optics : Nonlinear wave mixing
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Nonlinear Optics

Original Manuscript: March 3, 2014
Revised Manuscript: April 28, 2014
Manuscript Accepted: April 28, 2014
Published: June 2, 2014

Kyosuke Saito, Tadao Tanabe, and Yutaka Oyama, "Design of a GaP/Si composite waveguide for CW terahertz wave generation via difference frequency mixing," Appl. Opt. 53, 3587-3592 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007). [CrossRef]
  2. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994). [CrossRef]
  3. D. A. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984). [CrossRef]
  4. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002). [CrossRef]
  5. J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32, 1284–1286 (2007). [CrossRef]
  6. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996). [CrossRef]
  7. F. De Martini, “Infrared generation by coherent excitation of polaritons,” Phys. Rev. B 4, 4556–4578 (1971). [CrossRef]
  8. T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency–tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93, 4610–4615 (2003). [CrossRef]
  9. K. Kawase, M. Mizuno, S. Sohoma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium–tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24, 1065–1067 (1999). [CrossRef]
  10. C. Staus, T. Kuech, and L. McCaughan, “Continuously phase-matched terahertz difference frequency generation in an embedded waveguide structure supporting only fundamental modes,” Opt. Express 16, 13296–13303 (2008). [CrossRef]
  11. J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-wave frequency-tunable terahertz-wave generation from GaP,” IEEE Photon. Technol. Lett. 18, 2008–2010 (2006). [CrossRef]
  12. I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55  μm pumping,” Appl. Phys. Lett. 88, 071118 (2006). [CrossRef]
  13. K. L. Vodopyanov, J. E. Schaar, P. S. Kuo, M. M. Fejer, X. Yu, J. S. Harris, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz wave generation in orientation-patterned GaAs using resonantly enhanced scheme,” Proc. SPIE 6455, 645509 (2007). [CrossRef]
  14. K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, and K. Kawase, “Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation,” Opt. Express 17, 6676–6681 (2009). [CrossRef]
  15. T. Tanabe, S. Ragam, Y. Oyama, T. Sasaki, J. Nishizawa, M. Ohkado, and N. Yamada, “Two-directional CW THz wave generation system by pumping with a single fiber amplifier of near-IR lasers,” IEEE Photon. Technol. Lett. 21, 260–262 (2009). [CrossRef]
  16. T. Tanabe, S. Ragam, and Y. Oyama, “Continuous wave terahertz wave spectrometer based on diode laser pumping: potential applications in high resolution spectroscopy,” Rev. Sci. Instrum. 80, 113105 (2009). [CrossRef]
  17. S. Ragam, T. Tanabe, K. Saito, Y. Oyama, and J. Nishizawa, “Enhancement of CW THz wave power under noncollinear phase-matching conditions in difference frequency generation,” J. Lightwave Technol. 27, 3057–3061 (2009). [CrossRef]
  18. K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference-frequency mixing of near-infrared lasers,” J. Appl. Phys. 105, 063102 (2009). [CrossRef]
  19. Y. H. Avetisyan, “Terahertz-wave surface-emitted difference-frequency generation without quasi-phase-matching technique,” Opt. Lett. 35, 2508–2510 (2010). [CrossRef]
  20. Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13, 705–720 (2007). [CrossRef]
  21. L. Ley, R. A. Pollak, F. R. McFeely, S. P. Kowalczyk, and D. A. Shirley, “Total valence-band densities of states of III-V and II-VI compounds from x-ray photoemission spectroscopy,” Phys. Rev. B 9, 600–621 (1974). [CrossRef]
  22. H. Cao, R. A. Linke, and A. Nahata, “Broadband generation of terahertz radiation in a waveguide,” Opt. Lett. 29, 1751–1753 (2004). [CrossRef]
  23. S. Coleman and D. Grischkowsky, “Parallel plate THz transmitter,” Appl. Phys. Lett. 84, 654–656 (2004). [CrossRef]
  24. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997). [CrossRef]
  25. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21, 1379–1386 (2004). [CrossRef]
  26. J. Xia, J. Yu, Y. Li, and S. Chen, “Single-mode condition for silicon rib waveguides with large cross sections,” Opt. Eng. 43, 1953–1954 (2004). [CrossRef]
  27. K. Saito, T. Tanabe, Y. Oyama, K. Suto, T. Kimura, and J. Nishizawa, “Terahertz wave absorption in GaP crystals with different carrier densities,” J. Phys. Chem. Solids 69, 597–600 (2008). [CrossRef]
  28. R. W. Boyd, “Properties of the nonlinear susceptibility,” in Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 1, p. 49.
  29. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26, 1423–1431 (2008). [CrossRef]
  30. R. W. Boyd, “Difference-frequency generation and parametric amplification,” in Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 2, pp. 105–108.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited