OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 17 — Jun. 10, 2014
  • pp: 3598–3606

Comparisons of three NILU-UV instruments deployed at the same site in the New York area

L. Fan, W. Li, A. Dahlback, J. J. Stamnes, S. Englehardt, S. Stamnes, and K. Stamnes  »View Author Affiliations


Applied Optics, Vol. 53, Issue 17, pp. 3598-3606 (2014)
http://dx.doi.org/10.1364/AO.53.003598


View Full Text Article

Enhanced HTML    Acrobat PDF (504 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Norwegian Institute for Air Research ultraviolet (NILU-UV) irradiance meter is a ground-based, multichannel, moderate bandwidth filter instrument that measures irradiances at ultraviolet (UV) and visible wavelengths with five channels in the UV (302, 312, 320, 340, and 380 nm) and one channel in the visible (400–700 nm) part of the spectrum. Minute-by-minute irradiances recorded in these channels are used to infer the total ozone column (TOC) amount, and a radiation modification factor (RMF) designed to have a value close to 100 under cloud-free conditions. The performance of three NILU-UV instruments deployed side-by-side in the New York area (40.74°N, 74.03°E) is assessed, and derived TOC values are compared with those derived from the ozone monitoring instrument (OMI) deployed on NASA’s AURA satellite. Based on about three years of data, it was found that the three instruments yielded similar TOC values that were in close agreement with those derived from the OMI. The relative difference in TOC values derived from the three NILU-UV instruments was generally less than 2.5%. Cloud cover affects the accuracy of the inferred TOC, but reliable values can be obtained in the presence of clouds, although the accuracy deteriorates under heavy overcast conditions with RMF values smaller than 65 (low cloud transmittance).

© 2014 Optical Society of America

OCIS Codes
(010.4950) Atmospheric and oceanic optics : Ozone
(010.1615) Atmospheric and oceanic optics : Clouds

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: March 19, 2014
Manuscript Accepted: April 28, 2014
Published: June 2, 2014

Citation
L. Fan, W. Li, A. Dahlback, J. J. Stamnes, S. Englehardt, S. Stamnes, and K. Stamnes, "Comparisons of three NILU-UV instruments deployed at the same site in the New York area," Appl. Opt. 53, 3598-3606 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-17-3598


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Lapeta, I. Dyras, and Z. Ustrnu, “Homogenization of the total ozone amount series derived from NOAA/TOVS data,” in Proceedings of International TOVS Study Conference, Maratea, Italy, 4–10 October2006, pp. 599–605.
  2. A. Dahlback, “Measurements of biologically effective UV doses, total ozone abundances, and cloud effects with multichannel, moderate bandwidth filter instrument,” Appl. Opt. 35, 6514–6521 (1996). [CrossRef]
  3. A. Dahlback, H. A. Eide, B. A. K. Høiskar, R. O. Olsen, F. J. Schmidlin, S. C. Tsay, and K. Stamnes, “Comparison of data for ozone amounts and ultraviolet doses obtained from simultaneous measurements with various standard ultraviolet instruments,” Opt. Eng. 44, 041010 (2005). [CrossRef]
  4. A. Dahlback, N. Gelsor, J. J. Stamnes, and Y. Gjessing, “UV measurements in the 3000–5000  m altitude region in Tibet,” J. Geophys. Res. 112, D09308 (2007). [CrossRef]
  5. A. Kazantzidis, A. F. Bais, M. M. Zempila, C. Meleti, K. Eleftheratos, and C. S. Zerefos, “Evaluation of ozone column measurements over Greece with NILU-UV multi-channel radiometers,” Int. J. Remote Sens. 30, 4273–4281 (2009). [CrossRef]
  6. G. Norsang, L. Kocbach, W. Tsoja, J. J. Stamnes, A. Dahlbach, and P. Nema, “Ground-based measurements and modelling of solar UV-B radiation in Lhasa, Tibet,” J. Atmos. Env. 43, 1498–1502 (2009).
  7. G. Norsang, L. Kocbach, J. J. Stamnes, W. Tsoja, and N. Pingcuo, “Spatial distribution and temporal variation of solar UV radiation over the Tibetan Plateau,” Appl. Phys. Res. 3, 37–46 (2011). [CrossRef]
  8. G. Norsang, Y. Chen, N. Pingcuo, A. Dahlback, Ø. Frette, B. Kjeldstad, B. Hamre, K. Stamnes, and J. J. Stamnes, “Comparison of ground-based measurements of solar UV radiation at four sites on the Tibetan Plateau,” Appl. Opt. 53, 736–747 (2014).
  9. K. Stamnes, J. Slusser, and M. Bowen, “Derivation of total ozone abundance and cloud effects from spectral irradiance measurements,” Appl. Opt. 30, 4418–4426 (1991). [CrossRef]
  10. G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University, 1999).
  11. K. Stamnes, S.-C. Tsay, W. J. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef]
  12. K. Stamnes, S.-C. Tsay, W. J. Wiscombe, and I. Laszlo, “DISORT, a general-purpose Fortran program for discrete-ordinate-method radiative transfer in scattering and emitting layered media: documentation of methodology,” , 2000, available at ftp://climate1.gsfc.nasa.gov/wiscombe/ .
  13. A. Dahlback and K. Stamnes, “A new spherical model for computing the radiation field available for photolysis and heating at twilight,” Planet. Space Sci. 39, 671–683 (1991). [CrossRef]
  14. R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R. P. Cebula, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Reference, 1996).
  15. C. R. Roy, H. P. Gies, D. J. Lugg, S. Toomey, and D. W. Tomlinson, “The effect of clouds on enhancing UVB irradiance at the Earth’s surface: a one year study,” Geophys. Res. Lett. 27, 3337–3340 (1998).
  16. B. A. K. Høiskar, R. Haugen, T. Danielsen, A. Kylling, K. Edvardsen, A. Dahlback, B. Johnsen, M. Blumthaler, and J. Schreder, “Multichannel moderate-bandwidth filter instrument for measurement of the ozone-column amount, cloud transmittance, and ultraviolet dose rates,” Appl. Opt. 42, 3472–3479 (2003). [CrossRef]
  17. A. Lindfors and A. Arola, “On the wavelength-dependent attenuation of UV radiation by clouds,” Geophys. Res. Lett. 35, L05806 (2008). [CrossRef]
  18. Z. Ahmad, P. K. Bhartia, and N. Krotkov, “Spectral properties of backscattered UV radiation in cloudy atmospheres,” J. Geophys. Res. 109, D01201 (2003).
  19. P. K. Bhartia and C. W. Wellemeyer, “TOMS-V8 Total O3 algorithm,” in OMI Algorithm Theoretical Baseline Document: OMI Ozone Products, P. K. Bhartia, ed. (NASA Goddard Space Flight Center, 2002), Vol. II, ATBDOMI-02, version 2.0, p. 15.
  20. T. N. Aalerud and B. Johnsen, The Norwegian UV Monitoring Network (Norwegian Radiation Protection Authority, 2006).
  21. J. O. Bennett and W. L. Briggs, Using and Understanding Mathematics: A Quantitative Reasoning Approach (Pearson Addison Wesley, 2008).
  22. E. W. Weisstein, “Statistical correlation,” MathWorld, http://mathworld.wolfram.com .
  23. EOSDIS, “Table-of-Missing-OML1BIRR,” http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/documents/v003/Table-of-Missing-OML1BIRR-Files.docx .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited