OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 17 — Jun. 10, 2014
  • pp: 3607–3614

Random wandering of laser beams with orbital angular momentum during propagation through atmospheric turbulence

Valerii P. Aksenov, Valeriy V. Kolosov, and Cheslav E. Pogutsa  »View Author Affiliations

Applied Optics, Vol. 53, Issue 17, pp. 3607-3614 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (757 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The propagation of laser beams having orbital angular momenta (OAM) in the turbulent atmosphere is studied numerically. The variance of random wandering of these beams is investigated with the use of the Monte Carlo technique. It is found that, among various types of vortex laser beams, such as the Laguerre–Gaussian (LG) beam, modified Bessel–Gaussian beam, and hypergeometric Gaussian beam, having identical initial effective radii and OAM, the LG beam occupying the largest effective volume in space is the most stable one.

© 2014 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(030.1640) Coherence and statistical optics : Coherence
(050.4865) Diffraction and gratings : Optical vortices
(260.6042) Physical optics : Singular optics

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: March 21, 2014
Revised Manuscript: April 22, 2014
Manuscript Accepted: April 29, 2014
Published: June 3, 2014

Valerii P. Aksenov, Valeriy V. Kolosov, and Cheslav E. Pogutsa, "Random wandering of laser beams with orbital angular momentum during propagation through atmospheric turbulence," Appl. Opt. 53, 3607-3614 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]
  2. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2, 299–313 (2008). [CrossRef]
  3. J. P. Torres and L. Torner, eds., Twisted Photons: Applications of Light with Orbital Angular Momentum (Wiley-VCH, 2011).
  4. I. Freund, “Critical point explosions in two-dimensional wave fields,” Opt. Commun. 159, 99–117 (1999). [CrossRef]
  5. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2001), Vol. 42, pp. 220–276.
  6. P. Coullet, L. Gil, and F. Rocca, “Optical vortices,” Opt. Commun. 73, 403–408 (1989). [CrossRef]
  7. C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94, 153901 (2005). [CrossRef]
  8. G. Gbur and R. K. Tyson, “Vortex beam propagation through atmospheric turbulence and topological charge conservation,” J. Opt. Soc. Am. A 25, 225–229 (2008). [CrossRef]
  9. T. Wang, J. Pu, and Z. Chen, “Beam-spreading and topological charge of vortex beams propagating in a turbulent atmosphere,” Opt. Commun. 282, 1255–1259 (2009). [CrossRef]
  10. B. Rodenburg, M. P. J. Lavery, M. Malik, M. N. O’Sullivan, M. Mirhosseini, D. J. Robertson, M. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence on states of light carrying orbital angular momentum,” Opt. Lett. 37, 3735–3737 (2012). [CrossRef]
  11. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004). [CrossRef]
  12. M. Charnotskii, “Beam scintillations for ground-to-space propagation. Part I: path integrals and analytic techniques,” J. Opt. Soc. Am. A 27, 2169–2179 (2010). [CrossRef]
  13. G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88, 013601 (2002). [CrossRef]
  14. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willne, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012). [CrossRef]
  15. Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B. I. Erkmen, N. Chandrasekaran, M. P. J. Lavery, N. K. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing,” Opt. Lett. 38, 4062–4065 (2013). [CrossRef]
  16. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).
  17. H. T. Eyyuboğlu, Y. Baykal, C. Z. Çil, O. Korotkova, and Y. Cai, “Beam wander characteristics of flat-topped, dark hollow, cos and cosh-Gaussian, J0- and I0-Bessel Gaussian beams propagating in turbulent atmosphere: a review,” Proc. SPIE 7588, 75880N (2010). [CrossRef]
  18. H. T. Eyyuboğlu, Y. Baykal, and X. Ji, “Scintillations of Laguerre Gaussian beams,” Appl. Phys. B 98, 857–863 (2010). [CrossRef]
  19. Y. Gu, “Statistics of optical vortex wander on propagation through atmospheric turbulence,” J. Opt. Soc. Am. A 30, 708–715 (2013). [CrossRef]
  20. V. P. Aksenov and C. E. Pogutsa, “Increase in laser beam resistance to random inhomogeneities of atmospheric permittivity with an optical vortex included in the beam structure,” Appl. Opt. 51, 7262–7269 (2012). [CrossRef]
  21. V. P. Aksenov, V. V. Kolosov, and C. E. Pogutsa, “The influence of the vortex phase on the random wandering of a Laguerre–Gaussian beam propagating in a turbulent atmosphere: a numerical experiment,” J. Opt. 15, 044007 (2013). [CrossRef]
  22. H. T. Eyyuboğlu and F. Hardalaç, “Propagation of modified Bessel–Gaussian beams in turbulence,” Opt. Laser Technol. 40, 343–351 (2008). [CrossRef]
  23. V. V. Kotlyar, R. V. Skidanov, S. N. Khonina, and V. A. Soifer, “Hypergeometric modes,” Opt. Lett. 32, 742–744 (2007). [CrossRef]
  24. H. T. Eyyuboğlu, “Scintillation analysis of hypergeometric Gaussian beam via phase screen method,” Opt. Commun. 309, 103–107 (2013). [CrossRef]
  25. M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions, Applied Mathematics Series (National Bureau of Standards, 1965).
  26. R. L. Phillips and L. C. Andrews, “Spot size and divergence for Laguerre Gaussian beams of any order,” Appl. Opt. 22, 643–644 (1983). [CrossRef]
  27. A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Special Functions, Vol. 3 of Integrals and Series (Gordon & Breach Science, 1990).
  28. J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976). [CrossRef]
  29. P. A. Konyaev and V. P. Lukin, “Thermal distortions of focused laser beams in the atmosphere,” Appl. Opt. 24, 415–421 (1985). [CrossRef]
  30. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics, Vol. 4 of Wave Propagation through Random Media (Springer, 1988).
  31. V. I. Talanov, “Focusing light in cubic media,” JETP Lett. 11, 199–201 (1970).
  32. G. A. Baker and P. Graves-Morris, Padé Approximants, 2nd ed., Vol. 59 of Encyclopedia of Mathematics and its Applications (Cambridge University, 1996).
  33. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review, 2nd ed. (Dover, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited