OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 17 — Jun. 10, 2014
  • pp: 3642–3646

Significantly increased surface plasmon polariton mode excitation using a multilayer insulation structure in a metal–insulator–metal plasmonic waveguide

Hongyan Yang, Jianqing Li, and Gongli Xiao  »View Author Affiliations

Applied Optics, Vol. 53, Issue 17, pp. 3642-3646 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (548 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we propose a novel multilayer insulation structure in a metal–insulator–metal (MIM) plasmonic waveguide to explore the possibility of increasing surface plasmon polariton (SPP) mode excitation. Numerical investigations show that the effective refractive index of the multilayer insulation structure affects symmetric SPP mode excitation. The significant enhancement of electric field intensity in horizontal and vertical profiles with a dipole in SiO2 compared with in Al2O3 is observed in the proposed MIM plasmonic waveguides due to a combination of the improved optical density and dipole radiation intensities under a low refractive index. The Au/SiO2/Al2O3/SiO2/Au geometry shows the best enhancement performances, which can serve as an excellent guideline for designing and optimizing a high-performance SPP source using a multilayer insulation structure.

© 2014 Optical Society of America

OCIS Codes
(160.6030) Materials : Silica
(230.7390) Optical devices : Waveguides, planar
(240.6680) Optics at surfaces : Surface plasmons
(310.4165) Thin films : Multilayer design

ToC Category:
Optics at Surfaces

Original Manuscript: February 20, 2014
Revised Manuscript: April 29, 2014
Manuscript Accepted: April 30, 2014
Published: June 4, 2014

Hongyan Yang, Jianqing Li, and Gongli Xiao, "Significantly increased surface plasmon polariton mode excitation using a multilayer insulation structure in a metal–insulator–metal plasmonic waveguide," Appl. Opt. 53, 3642-3646 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).
  2. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003). [CrossRef]
  3. A. Hosseini, H. Nejati, and Y. Massoud, “Triangular lattice plasmonic photonic band gaps in subwavelength metal–insulator–metal waveguide structures,” Appl. Phys. Lett. 92, 013116 (2008). [CrossRef]
  4. J.-Q. Liu, L.-L. Wang, M.-D. He, W.-Q. Huang, D. Wang, B. Zou, and S. Wen, “A wide bandgap plasmonic bragg reflector,” Opt. Express 16, 4888–4894 (2008). [CrossRef]
  5. L. Zhou, X.-q. Yu, and Y.-y. Zhu, “Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide,” Appl. Phys. Lett. 89, 051901 (2006). [CrossRef]
  6. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006). [CrossRef]
  7. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  8. E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides,” Nano Lett. 8, 2925–2929 (2008). [CrossRef]
  9. D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008). [CrossRef]
  10. R. J. Walters, R. V. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9, 21–25 (2009). [CrossRef]
  11. E. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969). [CrossRef]
  12. S. Collin, F. Pardo, and J.-L. Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Express 15, 4310–4320 (2007). [CrossRef]
  13. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  14. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005). [CrossRef]
  15. F. Kou and T. Tamir, “Range extension of surface plasmons by dielectric layers,” Opt. Lett. 12, 367–369 (1987). [CrossRef]
  16. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited