OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 17 — Jun. 10, 2014
  • pp: 3687–3695

Microwave photonic mixer with high spurious-free dynamic range

Ali Altaqui, Erwin H. W. Chan, and Robert A. Minasian  »View Author Affiliations

Applied Optics, Vol. 53, Issue 17, pp. 3687-3695 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1013 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new linearized photonic mixer structure, which can fully eliminate the third-order intermodulation distortion, is presented. It is based on an integrated dual-parallel Mach–Zehnder modulator to which an optimized RF split and an optimized optical phase shift are applied, in series with a Mach–Zehnder modulator driven by the LO. The mixer achieves a very high spurious-free dynamic range performance, it enables essentially infinite isolation between the RF and LO ports, and it has the ability to function over a multioctave frequency range. Experimental results demonstrate a record measured spurious free dynamic range performance of 127dB·Hz4/5, which is over 22 dB higher than that of the conventional dual-series Mach–Zehnder modulator-based microwave photonic mixer.

© 2014 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 4, 2014
Revised Manuscript: May 6, 2014
Manuscript Accepted: May 6, 2014
Published: June 5, 2014

Ali Altaqui, Erwin H. W. Chan, and Robert A. Minasian, "Microwave photonic mixer with high spurious-free dynamic range," Appl. Opt. 53, 3687-3695 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Minasian, E. H. W. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express 21, 22918–22936 (2013). [CrossRef]
  2. G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993). [CrossRef]
  3. K. I. Kitayama and R. A. Griffin, “Optical down-conversion from millimeter wave to IF-band over 50-km-long optical link using an electroabsorption modulator,” IEEE Photon. Technol. Lett. 11, 287–289 (1999). [CrossRef]
  4. Y. Shi, W. Wang, and J. H. Bechtel, “High-isolation photonic microwave mixer/link for wideband signal processing and transmission,” J. Lightwave Technol. 21, 1224–1232 (2003). [CrossRef]
  5. C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech. 45, 1375–1383 (1997). [CrossRef]
  6. R. Helkey, C. Twichell, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15, 956–961 (1997). [CrossRef]
  7. E. H. W. Chan and R. A. Minasian, “Microwave photonic downconverter with high conversion efficiency,” J. Lightwave Technol. 30, 3580–3585 (2012). [CrossRef]
  8. B. Haas and T. E. Murphy, “A carrier-suppressed phase-modulated fiber optic link with IF downconversion of 30 GHz 64-QAM signals,” International Topical Meeting on Microwave Photonics, Valencia, Spain, 14–16 October2009.
  9. C. Bohemond, P. Morel, A. Sharaiha, T. Rampone, and B. Pucel, “Experimental and simulation analysis of the third-order input interception point in an all-optical RF mixer based on a semiconductor optical amplifier,” J. Lightwave Technol. 29, 91–96 (2011). [CrossRef]
  10. C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8, 1166–1168 (1996). [CrossRef]
  11. A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver applications,” IEEE Trans. Microwave Theory Tech. 43, 2311–2317 (1995). [CrossRef]
  12. B. Masella, B. Hraimel, and X. Zhang, “Enhanced spurious-free dynamic range using mixed polarization in optical single sideband Mach–Zehnder modulator,” J. Lightwave Technol. 27, 3034–3041 (2009). [CrossRef]
  13. G. Jaro and T. Berceli, “A new high-efficiency optical-microwave mixing approach,” J. Lightwave Technol. 21, 3078–3084 (2003). [CrossRef]
  14. B. M. Haas and T. E. Murphy, “Linearized downconverting microwave photonic link using dual-wavelength phase modulation and optical filtering,” IEEE Photon. J. 3, 1–12 (2011). [CrossRef]
  15. E. W. H. Chan, K. E. Alameh, and R. A. Minasian, “A photonics-based wideband linearized mixer,” Microwave Opt. Technol. Lett. 39, 500–502 (2003).
  16. A. Karim and J. Devenport, “High dynamic range microwave photonic links for RF signal transport and RF-IF conversion,” J. Lightwave Technol. 26, 2718–2724 (2008). [CrossRef]
  17. P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” International Topical Meeting on Microwave Photonics, Noordwijk, The Netherlands, 11–14 September2012.
  18. S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear millimeter-wave over fiber transmitter with subcarrier upconversion,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (Optical Society of America, 2011), paper JWA3.
  19. H. Roussell and R. Helkey, “Optical frequency conversion using a linearized LiNbO3 modulator,” IEEE Microwave Guided Wave Lett. 8, 408–410 (1998). [CrossRef]
  20. S. K. Korotky and R. M. Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Commun. 8, 1377–1381 (1990). [CrossRef]
  21. G. Zhu, W. Liu, and H. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 21, 1627–1629 (2009). [CrossRef]
  22. N. Yang, C. Caloz, and K. Wu, “Broadband compact 180° hybrid derived from the Wilkinson divider,” IEEE Trans. Microwave Theory Tech. 58, 1030–1037 (2010). [CrossRef]
  23. A. Moscoso-Martir, J. G. Wanguemert-Perez, I. Molina-Fernandez, and E. Marquez-Segura, “Slot-coupled multisection quadrature hybrid for UWB applications,” IEEE Microw. Wirel. Compon. Lett. 19, 143–145 (2009). [CrossRef]
  24. Aeroflex Weinschel., “1534 broadband resistive power splitter,” http://www.aeroflex.com/ams/weinschel/pdfiles/wmod1534.pdf .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited