OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 17 — Jun. 10, 2014
  • pp: 3706–3711

Generation of azimuthally polarized beams in fast axial flow CO2 laser with hybrid circular subwavelength grating mirror

Jiang Zhao, Bo Li, Heng Zhao, Wenjin Wang, Yi Hu, Sisi Liu, and Youqing Wang  »View Author Affiliations

Applied Optics, Vol. 53, Issue 17, pp. 3706-3711 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (894 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A hybrid circular subwavelength grating mirror is proposed and fabricated as a rear mirror in a fast axial flow CO2 laser system to generate azimuthally polarized beams (APBs). This grating mirror, with particular gold-covered ridges and nanopillar-stuffed grooves, performs wideband TE wave reflectivity and high polarization selectivity. It shows that the polarization selectivity mechanism lies in the gold ridge’s high reflectivity to the TE wave and the lower TM wave reflectivity, which are the result of the mode leaking into substrate through the dielectric-like nanopillar layer. Finally, a high-quality 550 W APB is obtained in subsequent experiments, which provides potential applications in drilling and welding.

© 2014 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(140.0140) Lasers and laser optics : Lasers and laser optics
(230.5440) Optical devices : Polarization-selective devices
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: March 26, 2014
Revised Manuscript: May 7, 2014
Manuscript Accepted: May 7, 2014
Published: June 5, 2014

Jiang Zhao, Bo Li, Heng Zhao, Wenjin Wang, Yi Hu, Sisi Liu, and Youqing Wang, "Generation of azimuthally polarized beams in fast axial flow CO2 laser with hybrid circular subwavelength grating mirror," Appl. Opt. 53, 3706-3711 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Scheuer, “Ultra-high enhancement of the field concentration in split ring resonators by azimuthally polarized excitation,” Opt. Express 19, 25454–25464 (2011). [CrossRef]
  2. F. K. Fatemi, M. Bashkansky, E. Oh, and D. Park, “Efficient excitation of the TE01 hollow metal waveguide mode for atom guiding,” Opt. Express 18, 323–332 (2010). [CrossRef]
  3. K. Luo, S. Qian, X. Wang, Y. Li, B. Gu, C. Tu, and H. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express 20, 120–127 (2012). [CrossRef]
  4. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007). [CrossRef]
  5. R. Weber, A. Michalowski, M. A. Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011). [CrossRef]
  6. I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28, 807–809 (2003). [CrossRef]
  7. J. Li, K. Ueda, L. Zhong, M. Musha, A. Shirakawa, and T. Sato, “Efficient excitations of radially and azimuthally polarized Nd3+: YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb2O5/SiO2,” Opt. Express 16, 10841–10848 (2008). [CrossRef]
  8. T. Kämpfe, S. Tonchev, A. V. Tishchenko, D. Gergov, and O. Parriaux, “Azimuthally polarized laser mode generation by multilayer mirror with wideband grating-induced TM leakage in the TE stopband,” Opt. Express 20, 5392–5401 (2012). [CrossRef]
  9. M. Rumpel, M. Hefner, T. Schoder, C. Pruss, A. Voss, W. Osten, M. A. Ahmed, and T. Graf, “Circular grating waveguide structures for intracavity generation of azimuthal polarization in a thin-disk laser,” Opt. Lett. 37, 1763–1765 (2012). [CrossRef]
  10. V. G. Niziev, V. P. Yakunim, and N. G. Turkin, “Generation of polarisation-nonuniform modes in a high-power CO2 laser,” Quantum Electronics 39, 505–514 (2009). [CrossRef]
  11. M. Endo, “Azimuthally polarized 1  kW CO2 laser with a triple-axicon retroreflector optical resonator,” Opt. Lett. 33, 1771–1773 (2008). [CrossRef]
  12. E. Hecht and A. Zajac, Optics (Addison-Wesley, 1974).
  13. X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93, 4407–4412 (2003). [CrossRef]
  14. G. A. Niklasson, C. G. Granqvist, and O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials,” Appl. Opt. 20, 26–30 (1981). [CrossRef]
  15. S. Bosch, J. Ferré-Borrull, N. Leinfellner, and A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453, 9–17 (2000). [CrossRef]
  16. M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modeling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi C 4, 1986–1990 (2007). [CrossRef]
  17. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optial properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1120 (1983). [CrossRef]
  18. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982). [CrossRef]
  19. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986). [CrossRef]
  20. M. Xu, H. P. Urbach, D. K. G. de Boer, and H. J. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express 13, 2303–2320 (2005). [CrossRef]
  21. S. Park, S. J. Di. Giacomo, R. Anisha, P. R. Berger, P. E. Thompson, and I. Adesida, “Fabrication of nanowires with high aspect ratios utilized by dry etching with SF6: C4F8 and self-limiting thermal oxidation on Si substrate,” J. Vac. Sci. Technol. B 28, 763–768 (2010). [CrossRef]
  22. G. Sun, T. Gao, X. Zhao, and H. Zhang, “Fabrication of micro/nano dual-scale structures by improved deep reactive ion etching,” J. Micromech. Microeng. 20, 075028 (2010). [CrossRef]
  23. M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J. Pommier, and T. Graf, “Radially polarized 3  kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32, 1824–1826 (2007). [CrossRef]
  24. T. Moser, J. Balmer, D. Delbeke, P. Muys, S. Verstuyft, and R. Baets, “Intracavity generation of radially polarized CO2 laser beams based on a simple binary dielectric diffraction grating,” Appl. Opt. 45, 8517–8522 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited