OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 17 — Jun. 10, 2014
  • pp: 3723–3736

Solving self-mixing equations for arbitrary feedback levels: a concise algorithm

Russell Kliese, Thomas Taimre, A. Ashrif A. Bakar, Yah Leng Lim, Karl Bertling, Milan Nikolić, Julien Perchoux, Thierry Bosch, and Aleksandar D. Rakić  »View Author Affiliations

Applied Optics, Vol. 53, Issue 17, pp. 3723-3736 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (770 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Self-mixing laser sensors show promise for a wide range of sensing applications, including displacement, velocimetry, and fluid flow measurements. Several techniques have been developed to simulate self-mixing signals; however, a complete and succinct process for synthesizing self-mixing signals has so far been absent in the open literature. This article provides a systematic numerical approach for the analysis of self-mixing sensors using the steady-state solution to the Lang and Kobayashi model. Examples are given to show how this method can be used to synthesize self-mixing signals for arbitrary feedback levels and for displacement, distance, and velocity measurement. We examine these applications with a deterministic stimulus and discuss the velocity measurement of a rough surface, which necessitates the inclusion of a random stimulus.

© 2014 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(280.3420) Remote sensing and sensors : Laser sensors

ToC Category:
Remote Sensing and Sensors

Original Manuscript: November 26, 2013
Revised Manuscript: April 28, 2014
Manuscript Accepted: April 28, 2014
Published: June 9, 2014

Russell Kliese, Thomas Taimre, A. Ashrif A. Bakar, Yah Leng Lim, Karl Bertling, Milan Nikolić, Julien Perchoux, Thierry Bosch, and Aleksandar D. Rakić, "Solving self-mixing equations for arbitrary feedback levels: a concise algorithm," Appl. Opt. 53, 3723-3736 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. M. Kane and K. A. Shore, eds., Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers (Wiley, 2005).
  2. S. Donati, “Laser interferometry,” in Electro-Optical Instrumentation (Prentice Hall, 2004), Chap. 4.
  3. S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998). [CrossRef]
  4. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 480–489 (1995). [CrossRef]
  5. U. Fiedler and K. J. Ebeling, “Design of VCSEL’s for feedback insensitive data transmission and external cavity active mode-locking,” IEEE J. Sel. Top. Quantum Electron. 1, 442–450 (1995). [CrossRef]
  6. G. Beheim and K. Fritsch, “Range finding using frequency-modulated laser diode,” Appl. Opt. 25, 1439–1442 (1986). [CrossRef]
  7. T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001). [CrossRef]
  8. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002). [CrossRef]
  9. F. F. M. de Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graaff, and A. C. M. Dassel, “Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue,” Appl. Opt. 31, 5844–5851 (1992). [CrossRef]
  10. P. G. R. King and G. J. Steward, “Metrology with an optical maser,” New Scientist 17, 180 (1963).
  11. S. Donati, “Laser interferometry by induced modulation of cavity field,” J. Appl. Phys. 49, 495–497 (1978). [CrossRef]
  12. J. H. Churnside, “Laser Doppler velocimetry by modulating a CO2 laser with backscattered light,” Appl. Opt. 23, 61–66 (1984). [CrossRef]
  13. A. Valavanis, P. Dean, Y. L. Lim, R. Alhathlool, M. Nikolić, R. Kliese, S. P. Khanna, D. Indjin, S. J. Wilson, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Self-mixing interferometry with terahertz quantum cascade lasers,” IEEE Sensors J. 13, 37–43 (2013). [CrossRef]
  14. K. Bertling, Y. L. Lim, T. Taimre, D. Indjin, P. Dean, R. Weih, S. Höfling, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Demonstration of the self-mixing effect in interband cascade lasers,” Appl. Phys. Lett. 103, 231107 (2013). [CrossRef]
  15. Y. L. Lim, M. Nikolić, K. Bertling, R. Kliese, and A. D. Rakić, “Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 17, 5517–5525 (2009). [CrossRef]
  16. P. Nerin, P. Puget, P. Besesty, and G. Chartier, “Self-mixing using a dual-polarisation Nd:YAG microchip laser,” Electron. Lett. 33, 491–492 (1997). [CrossRef]
  17. S. Sudo, T. Ohtomo, Y. Takahashi, T. Oishi, and K. Otsuka, “Determination of velocity of self-mobile phytoplankton using a self-mixing thin-slice solid-state laser,” Appl. Opt. 48, 4049–4055 (2009). [CrossRef]
  18. D. Han, M. Wang, and J. Zhou, “Self-mixing speckle in an erbium-doped fiber ring laser and its application to velocity sensing,” IEEE Photon. Technol. Lett. 19, 1398–1400 (2007). [CrossRef]
  19. X. Dai, M. Wang, Y. Zhao, and J. Zhou, “Self-mixing interference in fiber ring laser and its application for vibration measurement,” Opt. Express 17, 16543–16548 (2009). [CrossRef]
  20. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980). [CrossRef]
  21. R. Teysseyre, F. Bony, J. Perchoux, and T. Bosch, “Laser dynamics in sawtooth-like self-mixing signals,” Opt. Lett. 37, 3771–3773 (2012). [CrossRef]
  22. X. Raoul, T. Bosch, G. Plantier, and N. Servagent, “A double-laser diode onboard sensor for velocity measurements,” IEEE Trans. Instrum. Meas. 53, 95–101 (2004). [CrossRef]
  23. G. Acket, D. Lenstra, A. den Boef, and B. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. QE-20, 1163–1169 (1984). [CrossRef]
  24. D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. QE-21, 674–679 (1985). [CrossRef]
  25. J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992). [CrossRef]
  26. J. Ohtsubo, H. Kumagai, and R. Shogenji, “Numerical study of doppler dynamics in self-mixing semiconductor lasers,” IEEE Photon. Technol. Lett. 21, 742–744 (2009). [CrossRef]
  27. J. P. Toomey, D. M. Kane, M. W. Lee, and K. A. Shore, “Nonlinear dynamics of semiconductor lasers with feedback and modulation,” Opt. Express 18, 16955–16972 (2010). [CrossRef]
  28. J. Ohtsubo, “Theory of optical feedback in semiconductor lasers,” in Semiconductor Lasers: Stability, Instability and Chaos, 3rd ed. (Springer, 2013), Chap. 4.
  29. P. Spencer, P. Rees, and I. Pierce, “Theoretical analysis,” in Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers, D. M. Kane and K. A. Shore, eds. (Wiley, 2005), Chap. 2.
  30. K. Petermann, “Semiconductor lasers with optical feedback,” in Laser Diode Modulation and Noise (Kluwer Academic, 1988), Chap. 9.
  31. W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, “Self-mixing interference in a diode laser: experimental observations and theoretical analysis,” Appl. Opt. 32, 1551–1558 (1993). [CrossRef]
  32. J. Perchoux and T. Bosch, “Multimode VCSELs for self-mixing velocity measurements,” in IEEE Sensors (IEEE, 2007), pp. 419–422.
  33. H. Jentink, F. F. M. de Mul, H. Suichies, J. Aarnoudse, and J. Greve, “Small laser Doppler velocimeter based on the self-mixing effect in a diode laser,” Appl. Opt. 27, 379–385 (1988). [CrossRef]
  34. J. R. Tucker, A. D. Rakić, C. J. O’Brien, and A. V. Zvyagin, “Effect of multiple transverse modes in self-mixing sensors based on vertical-cavity surface-emitting lasers,” Appl. Opt. 46, 611–619 (2007). [CrossRef]
  35. S. Imran, M. Yamada, and Y. Kuwamura, “Theoretical analysis of the optical feedback noise based on multimode model of semiconductor lasers,” IEEE J. Quantum Electron. 48, 521–527 (2012). [CrossRef]
  36. J. Xi, Y. Yu, J. F. Chicharo, and T. Bosch, “Estimating the parameters of semiconductor lasers based on weak optical feedback self-mixing interferometry,” IEEE J. Quantum Electron. 41, 1058–1064 (2005). [CrossRef]
  37. U. Zabit, F. Bony, T. Bosch, and A. D. Rakić, “A self-mixing displacement sensor with fringe-loss compensation for harmonic vibrations,” IEEE Photon. Technol. Lett. 22, 410–412 (2010). [CrossRef]
  38. K. Bertling, J. R. Tucker, and A. D. Rakić, “Optimum injection current waveform for a laser range finder based on the self-mixing effect,” Proc. SPIE 5277, 334–345 (2004). [CrossRef]
  39. G. Plantier, C. Bes, and T. Bosch, “Behavioral model of a self-mixing laser diode sensor,” IEEE J. Quantum Electron. 41, 1157–1167 (2005). [CrossRef]
  40. L. A. Coldren and S. W. Corzine, “A phenomenological approach to diode lasers,” in Diode Lasers and Photonic Integrated Circuits, K. Chang, ed. (Wiley, 1995), Chap. 2.
  41. Y. Mitsuhashi, J. Shimada, and S. Mitsutsuka, “Voltage change across the self-coupled semiconductor laser,” IEEE J. Quantum Electron. QE-17, 1216–1225 (1981). [CrossRef]
  42. S. Donati, “Responsivity and noise of self-mixing photodetection schemes,” IEEE J. Quantum Electron. 47, 1428–1433 (2011). [CrossRef]
  43. T. Taimre and A. D. Rakić, “On the nature of Acket’s characteristic parameter C in semiconductor lasers,” Appl. Opt. 53, 1001–1006 (2014). [CrossRef]
  44. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  45. S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, “Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode,” Appl. Opt. 25, 1417–1419 (1986). [CrossRef]
  46. U. Zabit, O. Bernal, and T. Bosch, “Self-mixing laser sensor for large displacements: Signal recovery in the presence of speckle,” IEEE Sensors J. 13, 824–831 (2013). [CrossRef]
  47. G. Giuliani and S. Donati, “Laser interferometry,” in Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers, D. M. Kane and K. A. Shore, eds. (Wiley, 2005), Chap. 7.
  48. MathWorks, “fzero,” http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fzero.html .
  49. Y. L. Lim, P. Dean, M. Nikolić, R. Kliese, S. P. Khanna, M. Lachab, A. Valavanis, D. Indjin, Z. Ikonić, P. Harrison, E. H. Linfield, A. G. Davies, S. J. Wilson, and A. D. Rakić, “Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers,” Appl. Phys. Lett. 99, 081108 (2011). [CrossRef]
  50. F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37, 6684–6689 (1998). [CrossRef]
  51. A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, P. Dean, D. Indjin, Z. Ikonić, P. Harrison, A. Valavanis, S. P. Khanna, M. Lachab, S. J. Wilson, E. H. Linfield, and A. G. Davies, “Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis,” Opt. Express 21, 22194–22205 (2013). [CrossRef]
  52. P. J. de Groot and G. M. Gallatin, “Three-dimensional imaging coherent laser radar array,” Opt. Eng. 28, 284456 (1989). [CrossRef]
  53. R. Kliese and A. D. Rakić, “Spectral broadening caused by dynamic speckle in self-mixing velocimetry sensors,” Opt. Express 20, 18757–18771 (2012). [CrossRef]
  54. D. P. Kroese, T. Taimre, and Z. I. Botev, “Random process generation,” in Handbook of Monte Carlo Methods (Wiley, 2011), Chap. 5.
  55. K. Y. R. Billah and M. Shinozuka, “Numerical method for colored-noise generation and its application to a bistable system,” Phys. Rev. A 42, 7492–7495 (1990). [CrossRef]
  56. D. J. Young and N. C. Beaulieu, “The generation of correlated Rayleigh random variates by inverse discrete Fourier transform,” IEEE Trans. Commun. 48, 1114–1127 (2000). [CrossRef]
  57. P. Welch, “The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms,” IEEE Trans. Audio Electroacoust. 15, 70–73 (1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited