OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 17 — Jun. 10, 2014
  • pp: 3748–3752

Measuring refractive index using the focal displacement method

Joel M. Murray, Jean Wei, Jacob O. Barnes, Jonathan E. Slagle, and Shekhar Guha  »View Author Affiliations

Applied Optics, Vol. 53, Issue 17, pp. 3748-3752 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (293 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple technique is introduced for measuring the refractive index of plane-parallel samples having thickness of the order of a millimeter. The refractive index values are reported for six bulk semiconductors, each index measured at two infrared wavelengths using this method. The values are found to be within a few percent of those in literature for four semiconductors. The other two semiconductors were newly grown ternary alloys (CdMgTe and CdMnTe), for which the refractive index values have not been reported previously at the wavelengths studied here.

© 2014 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(160.4670) Materials : Optical materials
(160.6000) Materials : Semiconductor materials

ToC Category:

Original Manuscript: March 25, 2014
Manuscript Accepted: April 22, 2014
Published: June 10, 2014

Joel M. Murray, Jean Wei, Jacob O. Barnes, Jonathan E. Slagle, and Shekhar Guha, "Measuring refractive index using the focal displacement method," Appl. Opt. 53, 3748-3752 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. T. F. Marple, “Refractive index of ZnSe, ZnTe, and CdTe,” J. Appl. Phys. 35, 539–542 (1964). [CrossRef]
  2. D. E. Zelmon, E. A. Hanning, and P. G. Schunemann, “Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9  μm with implications for phase matching in optical frequency-conversion devices,” J. Opt. Soc. Am. B 18, 1307–1310 (2001). [CrossRef]
  3. J. C. Bhattacharya, “Refractive index measurement,” Opt. Laser Technol. 19, 29–32 (1987). [CrossRef]
  4. G. D. Gillen and S. Guha, “Use of Michelson and Fabry–Perot interferometry for independent determination of the refractive index and physical thickness of wafers,” Appl. Opt. 44, 344–347 (2005). [CrossRef]
  5. G. D. Gillen, C. DiRocco, P. Powers, and S. Guha, “Temperature-dependent refractive index measurements of wafer-shaped InAs and InSb,” Appl. Opt. 47, 164–168 (2008). [CrossRef]
  6. H. J. Choi, H. H. Lim, H. S. Moon, T. B. Eom, J. J. Ju, and M. Cha, “Measurement of refractive index and thickness of transparent plate by dual-wavelength interference,” Opt. Express 18, 9429–9434 (2010). [CrossRef]
  7. H. Kogelnik and T. Li, “Beams, Modes and Resonators,” in Handbook of Lasers with Selected Data on Optical Technology, R. Pressley, ed. (CRC Press, 1971), pp. 421–441.
  8. F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill, 1957).
  9. S. Guha, “Validity of the paraxial approximation in the focal region of a small-f-number lens,” Opt. Lett. 26, 1598–1600 (2001). [CrossRef]
  10. Zemax, LLC, www.zemax.com .
  11. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003). [CrossRef]
  12. H. W. Icenogle, B. C. Platt, and W. L. Wolfe, “Refractive indexes and temperature coefficients of germanium and silicon,” Appl. Opt. 15, 2348–2351 (1976). [CrossRef]
  13. P. Hlidek, J. Bok, J. Franc, and R. Grill, “Refractive index of CdTe: spectral and temperature dependence,” J. Appl. Phys. 90, 1672–1674 (2001). [CrossRef]
  14. S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y,” J. Appl. Phys. 66, 6030–6040 (1989). [CrossRef]
  15. From Eq. (1), the refractive index is given by n=(1−Δz/d)−1. With the reasonable assumption that the thickness measurement errors are normally distributed and uncorrelated with Δz, the relative uncertainty δn/n in the refractive index is δnn=n−1(∂n∂dδd)2+(∂n∂ΔzδΔz)2=nd(Δzdδd)2+(δΔz)2.The uncertainty δΔz in the focal shift is given by δΔz=δzsample2+δznosample2≈δz2,where we have explicitly assumed that the focal position measurement error δz is unchanged by the presence of the sample.
  16. A. Hossain, V. Yakimovich, A. E. Bolotnikov, K. Bolton, G. S. Camarda, Y. Cui, J. Franc, R. Gul, K.-H. Kim, H. Pittman, G. Yang, R. Herpst, and R. B. James, “Development of cadmium magnesium telluride (Cd1−xMgxTe) for room temperature X- and gamma-ray detectors,” J. Cryst. Growth 379, 34–40 (2013). [CrossRef]
  17. A. Mycielski, A. Burger, M. Sowinska, M. Groza, A. Szadkowski, P. Wojnar, B. Witkowska, W. Kaliszek, and P. Siffert, “Crystal growth and characterization of Cd0.8Mn0.2Te using vertical Bridgman method,” Phys. Status Solidi C 5, 1578–1585 (2005).
  18. L. Kowalczyk, “Second harmonic generation in Cd1−xMnxTe,” J. Cryst. Growth 72, 389–392 (1985).
  19. M. Luttmann, F. Bertin, and A. Chabli, “Optical properties of CdMgTe epitaxial layers: a variable-angle spectroscopic ellipsometry study,” J. Appl. Phys. 78, 3387–3391 (1995). [CrossRef]
  20. D. W. Schubert, M. M. Kraus, R. Kenklies, C. R. Becker, and R. N. Bicknell-Tassius, “Composition and wavelength dependence of the refractive index in Cd1−xMnxTe epitaxial layers,” Appl. Phys. Lett. 60, 2192–2194 (1992). [CrossRef]
  21. X. Sun, H. Ma, H. Ming, Z. Zheng, J. Yang, and J. Xie, “The measurement of refractive index profile and aberration of radial gradient index lens by using imaging method,” Opt. Laser Technol. 36, 163–166 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited