OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 17 — Jun. 10, 2014
  • pp: 3773–3781

Design of high-resolution and multilevel reference pattern for improvement of both light utilization efficiency and signal-to-noise ratio in coaxial holographic data storage

Teruyoshi Nobukawa and Takanori Nomura  »View Author Affiliations


Applied Optics, Vol. 53, Issue 17, pp. 3773-3781 (2014)
http://dx.doi.org/10.1364/AO.53.003773


View Full Text Article

Enhanced HTML    Acrobat PDF (3208 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A high-resolution and multilevel designed reference pattern (DRP) is presented for improvement of both light utilization efficiency and the signal-to-noise ratio (SNR) of reconstructed images in coaxial holographic data storage. With a DRP, the desired Fourier power spectrum of a reference beam is obtained. Numerical and experimental results show that the DRP increases the SNR compared with that of a random phase mask (RPM). Moreover, the light utilization efficiency of the DRP is higher than that of a high-resolution RPM. In addition, the effect of the phase level and the pixel pitch of DRPs on the SNR and the light utilization efficiency are investigated.

© 2014 Optical Society of America

OCIS Codes
(090.2890) Holography : Holographic optical elements
(090.7330) Holography : Volume gratings
(210.2860) Optical data storage : Holographic and volume memories

ToC Category:
Holography

History
Original Manuscript: March 13, 2014
Revised Manuscript: May 9, 2014
Manuscript Accepted: May 9, 2014
Published: June 10, 2014

Citation
Teruyoshi Nobukawa and Takanori Nomura, "Design of high-resolution and multilevel reference pattern for improvement of both light utilization efficiency and signal-to-noise ratio in coaxial holographic data storage," Appl. Opt. 53, 3773-3781 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-17-3773


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004). [CrossRef]
  2. M. Hosaka, T. Ishii, A. Tanaka, S. Koga, and T. Hoshizawa, “1  Tbit/inch2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule,” Jpn. J. Appl. Phys. 52, 09LD01 (2013). [CrossRef]
  3. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005). [CrossRef]
  4. K. Tanaka, M. Hara, K. Tokuyama, Y. Okamoto, H. Mori, A. Fukumoto, and K. Okada, “415  Gbit/in.2 recording in coaxial holographic storage using low-density parity-check codes,” in Optical Data Storage Topical Meeting (IEEE, 2009), pp. 70–72.
  5. M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008). [CrossRef]
  6. A. Shibukawa, A. Okamoto, A. Tomita, M. Takabayashi, and K. Sato, “Multilayer collinear holographic memory with movable random phase mask,” Jpn. J. Appl. Phys. 50, 09ME10 (2011). [CrossRef]
  7. J. Li, C. H. Gu, X. Tan, Q. He, and G. Jin, “Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage,” Opt. Lett. 37, 936–938 (2012). [CrossRef]
  8. L. Cao, J. Liu, J. Li, Q. He, and G. Jin, “Orthogonal reference pattern multiplexing for collinear holographic data storage,” Appl. Opt. 53, 1–8 (2014). [CrossRef]
  9. E. Watanabe and K. Kodate, “Optical correlator for face recognition using collinear holographic system,” Jpn. J. Appl. Phys. 45, 6759–6761 (2006). [CrossRef]
  10. M. Toishi, M. Hara, K. Tanaka, T. Tanaka, and K. Watanabe, “Novel encryption method using multi reference patterns in coaxial holographic data storage,” Jpn. J. Appl. Phys. 46, 3775–3781 (2007). [CrossRef]
  11. C. B. Burckhardt, “Use of a random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt. 9, 695–700 (1970). [CrossRef]
  12. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15, 16196–16209 (2007). [CrossRef]
  13. Y. Yu, C. Cheng, S. Hsieh, T. Teng, and C. Sun, “Point spread function by random phase reference in collinear holographic storage,” Opt. Eng. 48, 020501 (2009). [CrossRef]
  14. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902–4914 (2004). [CrossRef]
  15. T. Nobukawa and T. Nomura, “Coaxial holographic memory with designed reference pattern on the basis of Nyquist aperture for high density recording,” Jpn. J. Appl. Phys. 52, 09LD09 (2013). [CrossRef]
  16. N. Yoshikawa and T. Yatagai, “Phase optimization of a kinoform by simulated annealing,” Appl. Opt. 33, 863–868 (1994). [CrossRef]
  17. V. Vadde, B. V. K. V. Kumar, G. W. Burr, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, “A figure-of-merit for the optical aperture used in digital volume holographic data storage,” Proc. SPIE 3401, 194–200 (1998). [CrossRef]
  18. T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31, 1208–1210 (2006). [CrossRef]
  19. C. Sun, Y. Yu, S. Hsieh, T. Teng, and M. Tsai, “Point spread function of a collinear hoplographic storage system,” Opt. Express 15, 18111–18118 (2007). [CrossRef]
  20. Y. Yu, C. Chen, and C. Sun, “Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array,” Opt. Lett. 35, 1130–1132 (2010). [CrossRef]
  21. M. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377–5385 (1998). [CrossRef]
  22. Y. Saita, T. Nomura, E. Nitanai, and T. Numata, “Design of reference pattern and input phase mask for coaxial holographic memory,” Jpn. J. Appl. Phys. 50, 09ME03 (2011). [CrossRef]
  23. S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246–1252 (2006). [CrossRef]
  24. Y. Yonetani, K. Nitta, and O. Matoba, “Numerical evaluation of angular multiplexing in reflection-type holographic data storage in photopolymer with shrinkage,” Appl. Opt. 49, 694–700 (2010). [CrossRef]
  25. B. M. King and M. A. Neifeld, “Sparse modulation coding for increased capacity in volume holographic storage,” Appl. Opt. 39, 6681–6688 (2000). [CrossRef]
  26. T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. SPIE 6282, 62820S (2006). [CrossRef]
  27. Y. Yu, T. Teng, S. Hsieh, C. Cheng, and C. Sun, “Shift selectivity of collinear volume holographic storage,” Opt. Commun. 283, 3895–3900 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited