OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 17 — Jun. 10, 2014
  • pp: 3807–3813

All-optical XNOR/NOT logic gates and LATCH based on a reflective vertical cavity semiconductor saturable absorber

Rajib Pradhan  »View Author Affiliations


Applied Optics, Vol. 53, Issue 17, pp. 3807-3813 (2014)
http://dx.doi.org/10.1364/AO.53.003807


View Full Text Article

Enhanced HTML    Acrobat PDF (578 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work proposes a scheme of all-optical XNOR/NOT logic gates based on a reflective vertical cavity semiconductor (quantum wells, QWs) saturable absorber (VCSSA). In a semiconductor Fabry–Perot cavity operated with a low-intensity resonance wavelength, both intensity-dependent saturating phase-shift and thermal phase-shift occur, which are considered in the proposed logic operations. The VCSSA-based logics are possible using the saturable behavior of reflectivity under the typical operating conditions. The low-intensity saturable reflectivity is reported for all-optical logic operations where all possible nonlinear phase-shifts are ignored. Here, saturable absorption (SA) and the nonlinear phase-shift-based all-optical XNOR/NOT gates and one-bit memory or LATCH are proposed under new operating conditions. All operations are demonstrated for a VCSSA based on InGaAs/InP QWs. These types of SA-based logic devices can be comfortably used for a signal bit rate of about 10 GHz corresponding to the carrier recovery time of the semiconductor material.

© 2014 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(050.5080) Diffraction and gratings : Phase shift
(190.3270) Nonlinear optics : Kerr effect
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 24, 2014
Manuscript Accepted: April 27, 2014
Published: June 10, 2014

Citation
Rajib Pradhan, "All-optical XNOR/NOT logic gates and LATCH based on a reflective vertical cavity semiconductor saturable absorber," Appl. Opt. 53, 3807-3813 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-17-3807


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Porzi, A. Isomaki, M. Guina, and O. G. Okhotnikov, “Impedance-detuned high-contrast vertical cavity semiconductor switch,” in Proceedings of the Optical Fiber Communication Conference (OFC) (2005), paper OThM 5.
  2. C. Porzi, M. Guina, L. Orsila, A. Bogoni, and L. Poti, “Simultaneous dual-wavelength conversion with multiresonant saturable absorption vertical-cavity semiconductor gate,” IEEE Photon. Technol. Lett. 20, 499–501 (2008). [CrossRef]
  3. Y. Tang, A. Siahmakoun, G. Sergio, M. Guina, and M. Pessa, “Optical switching in a resonant Fabry–Perot saturable absorber,” J. Opt. A 8, 991–995 (2006). [CrossRef]
  4. G. de Valicourt, C. Porzi, M. Guina, and N. Balkan, “Dilute nitride vertical-cavity gate for all-optical logic at 1.3  mm,” IET Optoelectron. 4, 201–209 (2010). [CrossRef]
  5. C. Porzi, M. Guina, A. Bogoni, and L. Poti, “All-optical NAND/NOR logic gates based on semiconductor saturable absorber etalons,” IEEE J. Sel. Top. Quantum Electron. 14, 927–937 (2008). [CrossRef]
  6. E. Garmire, “Criteria for optical bistability in a lossy saturating Fabry–Perot,” IEEE J. Quantum Electron. 25, 289–295 (1989). [CrossRef]
  7. S. Bhargava, C. Porzi, P. K. Datta, A. Bogoni, L. Potì, and R. Gangopadhyay, “Optical bistability in a nonlinear resonator with saturable losses and intensity-dependent refractive index,” in Proceedings of International Conference on Communications (2010), pp. 1–5.
  8. R. Pradhan, S. Saha, and P. K. Datta, “Dispersive bi-stability in a vertical microcavity-based saturable absorber due to photo-thermal effect and initial phase-detuning,” Opt. Commun. 287, 203–209 (2013). [CrossRef]
  9. M. Guina, A. Vainionpää, A. Harkonen, L. Orsila, J. Lyytikäinen, and O. G. Okhotnikov, “Vertical-cavity saturable-absorber intensity modulator,” Opt. Lett. 28, 43–45 (2003). [CrossRef]
  10. D. Massoubre, J. L. Oudar, A. O’Hare, M. Gay, L. Bramerie, J. C. Soimn, A. Shen, and J. J. Decobert, “Analysis of thermal limitations in high-speed microcavity saturable absorber all-optical switching gates,” J. Lightwave Technol. 24, 3400–3408 (2006). [CrossRef]
  11. É. L. Cren, S. Lobo, S. Fève, and J.-C. Simon, “Observation of thermal effects due to an optical incident signal and high fluence on InGaAs/InP multiple quantum-well saturable absorber nonlinear mirrors: evolution of characteristics and time constants,” Appl. Opt. 45, 6831–6838 (2006). [CrossRef]
  12. R. Pradhan, K. Hussain, and P. K. Datta, “Reflective vertical cavity semiconductor saturable absorber for functional operations with thermal limitations and saturable index change,” Opt. Commun. 284, 3416–3421 (2011). [CrossRef]
  13. R. Pradhan, L. Mishra, K. Hussain, S. Saha, and P. K. Datta, “All-optical 2R regeneration with contrast enhancement in a reflective vertical cavity quantum-wells saturable absorber,” J. Opt. Commun. Networks 5, 457–464 (2013). [CrossRef]
  14. P. K. Datta, R. Pradhan, L. Mishra, and S. Saha, “Effect of saturable index change on all-optical logic operations in passive vertical cavity semiconductor saturable absorber,” IET Optoelectron. 5, 77–82 (2011). [CrossRef]
  15. C. Cacciatore, D. Campi, C. Coriasso, G. Meneghini, and C. Rigo, “Low-power, refractive nonlinearity in InGaAs/InP multi-quantum well waveguide,” Electron. Lett. 28, 1624–1625 (1992). [CrossRef]
  16. A. M. Fox, A. C. Mciel, M. G. Shorthose, and J. F. Ryan, “Nonlinear excitonic optical absorption in GaLnAs/InP,” Appl. Phys. Lett. 51, 30–32 (1987). [CrossRef]
  17. J. S. Weiner, D. B. Pearson, D. A. B. Miller, and D. S. Chemler, “Nonlinear spectroscopy of InGaAs/InAlAs multiple quantum well structures,” Appl. Phys. Lett. 49, 531–533 (1986). [CrossRef]
  18. R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, “Ultrafast 1.55  μm photoresponses in low-temperature-grown InGaAs/InAlAs quantum wells,” Appl. Phys. Lett. 65, 1790–1792 (1994). [CrossRef]
  19. C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500  fs carrier lifetimes,” Appl. Phys. Lett. 85, 4965–4967 (2004). [CrossRef]
  20. Y. Chen, S. S. Prabhu, S. E. Ralf, and D. T. McLnturff, “Trapping and recombination dynamics of low-temperature-grown InGaAs/InAlAs multiple quantum-wells,” Appl. Phys. Lett. 72, 439–441 (1998). [CrossRef]
  21. E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998). [CrossRef]
  22. M. B. Johnson, T. C. Mcgill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54, 2424–2426 (1989). [CrossRef]
  23. M. Lambsdorff, J. Kulh, J. Rosenzweig, A. Axmann, and J. Schneider, “Sub-picosecond lifetimes in radiation damaged GaAs,” Appl. Phys. Lett. 58, 1881–1883 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited