OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 18 — Jun. 20, 2014
  • pp: 3832–3840

Electromagnetic plasmon propagation and coupling through gold nanoring heptamers: a route to design optimized telecommunication photonic nanostructures

Arash Ahmadivand and Saeed Golmohammadi  »View Author Affiliations

Applied Optics, Vol. 53, Issue 18, pp. 3832-3840 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (994 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, a configuration of bulk gold nanorings with certain geometrical sizes has been utilized for designing efficient photonic subwavelength nanostructures. We verify that adjacent heptamers based on gold nanorings are able to couple and transport magnetic plasmon resonance along a nanoring array in chrysene and triphenylene molecule orientations. This magnetic resonance transmission is caused by an antiphase circular current through the heptamer arrays. An orientation model of nanoring heptamers helps us to provide efficient optical structures with a remarkable decay length and a trivial ratio of destructive interferences. Exploiting the robust magnetic plasmon resonance coupling effect between heptamers arrays, we would be able to propose a practical plasmonic waveguide, a Y-shaped optical power divider (splitter), and an ON/OFF router that is operating based on destructive and constructive interferences. The quality of power splitting has been discussed comprehensively and also, the effect of undesirable occasions on the functioning performance of the proposed router has been investigated numerically. Ultimately, we verify that employing heptamers based on gold nanorings leads us to propose efficient plasmonic nanostructures and devices that are able to work in the telecommunication spectrum.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.1150) Optical devices : All-optical devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:

Original Manuscript: January 28, 2014
Revised Manuscript: April 8, 2014
Manuscript Accepted: May 12, 2014
Published: June 12, 2014

Arash Ahmadivand and Saeed Golmohammadi, "Electromagnetic plasmon propagation and coupling through gold nanoring heptamers: a route to design optimized telecommunication photonic nanostructures," Appl. Opt. 53, 3832-3840 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. B. E. A. Saleh and M. C. Tiech, Fundamentals of Photonics (Wiley, 1991).
  3. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  4. C. F. Bohren and D. R. Huffman, Absorption, and Scattering of Light by Small Particles (Wiley, 1998).
  5. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003). [CrossRef]
  6. D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004). [CrossRef]
  7. J. B. Lassiter, J. Azipurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008). [CrossRef]
  8. Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176–2179 (2002). [CrossRef]
  9. K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon resonance to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006). [CrossRef]
  10. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010). [CrossRef]
  11. N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20, 4521–4525 (2008). [CrossRef]
  12. N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008). [CrossRef]
  13. N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, and N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanoclusters networks,” ACS Nano 6, 5482–5488 (2012). [CrossRef]
  14. M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behaviors,” ACS Nano 5, 2042–2050 (2011). [CrossRef]
  15. J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Gapasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010). [CrossRef]
  16. A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11, 1685–1689 (2011). [CrossRef]
  17. M. Siveirinha and N. Engheta, “Tunneling of electromagnetic energy through sub-wavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97, 157403 (2006). [CrossRef]
  18. T. R. Jesen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. V. Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
  19. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
  20. K. Y. Jung, F. L. Teixeira, and R. M. Reano, “Au/SiO2 nanoring plasmon waveguides at optical communication band,” J. Lightwave Technol. 25, 2757–2765 (2007). [CrossRef]
  21. A. Ahmadivand and S. Golmohammadi, “Comprehensive investigation of noble metal nanoparticles shape, size, and material on the optical response of optimal plasmonic Y-splitter waveguides,” Opt. Commun. 310, 1–11 (2014). [CrossRef]
  22. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86, 455–460 (2007). [CrossRef]
  23. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001). [CrossRef]
  24. N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012). [CrossRef]
  25. A. Ahmadivand, “Hybrid photonic-plasmonic polarization beam splitter (HPPPBS) based on metal-silica-silicon interactions,” Opt. Laser Technol. 58, 145–150 (2014). [CrossRef]
  26. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008). [CrossRef]
  27. C. Johnathan, N. Greeves, S. Warren, and P. Wothers, Organic Chemistry (Oxford University, 2001).
  28. E. D. Palik, Handbook of Optical Constants of Solids, 2nd ed. (Academic, 1991).
  29. A. Ahmadivand, S. Golmohammadi, and A. Rostami, “T and Y-splitters based on Au/SiO2 nanoring chain at an optical communication band,” Appl. Opt. 51, 2784–2793 (2012). [CrossRef]
  30. M. Burresi, “Nanoscale investigation of light matter interactions mediated by magnetic and electric coupling,” Ph.D. dissertation (University of Twente, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited