OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 18 — Jun. 20, 2014
  • pp: 3848–3853

Short monolithic dual-wavelength single-longitudinal-mode DBR phosphate fiber laser

Lingyun Xiong, Peter Hofmann, Axel Schülzgen, N. Peyghambarian, and Jacques Albert  »View Author Affiliations


Applied Optics, Vol. 53, Issue 18, pp. 3848-3853 (2014)
http://dx.doi.org/10.1364/AO.53.003848


View Full Text Article

Enhanced HTML    Acrobat PDF (624 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate a 5-cm-long monolithic dual-wavelength single-longitudinal mode distributed Bragg reflector (DBR) all-phosphate fiber laser. Strong UV-induced fiber Bragg gratings are directly written in highly Er/Yb codoped phosphate fiber. The separation between gratings is selected as 1 cm to only excite two longitudinal modes in the DBR cavity. By exploiting the spatial hole burning effect and the polarization hole burning effect, stable narrow-linewidth dual-wavelength lasing emission with 38 pm wavelength spacing and a total emitted power of 2.8 mW is obtained from this DBR fiber laser. A microwave signal at 4.58 GHz is generated by the heterodyne detection of the dual-wavelength laser.

© 2014 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(140.3510) Lasers and laser optics : Lasers, fiber
(260.5430) Physical optics : Polarization
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.3738) Fiber optics and optical communications : Fiber Bragg gratings, photosensitivity

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 4, 2014
Manuscript Accepted: May 12, 2014
Published: June 12, 2014

Citation
Lingyun Xiong, Peter Hofmann, Axel Schülzgen, N. Peyghambarian, and Jacques Albert, "Short monolithic dual-wavelength single-longitudinal-mode DBR phosphate fiber laser," Appl. Opt. 53, 3848-3853 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-18-3848


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, “Cooperative upconversion and energy transfer of new high Er3+- and Yb3+–Er3+-doped phosphate glasses,” J. Opt. Soc. Am. B 17, 833–839 (2000). [CrossRef]
  2. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550  nm,” J. Lightwave Technol. 22, 57–62 (2004). [CrossRef]
  3. T. Qiu, S. Suzuki, A. Schülzgen, L. Li, A. Polynkin, V. Temyanko, J. V. Moloney, and N. Peyghambarian, “Generation of watt-level single-longitudinal-mode output from cladding-pumped short fiber lasers,” Opt. Lett. 30, 2748–2750 (2005). [CrossRef]
  4. L. Li, A. Schülzgen, V. L. Temyanko, M. M. Morrell, S. Sabet, H. Li, J. V. Moloney, and N. Peyghambarian, “Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode output power,” Appl. Phys. Lett. 88, 161106 (2006). [CrossRef]
  5. A. Schülzgen, L. Li, V. L. Temyanko, S. Suzuki, J. V. Moloney, and N. Peyghambarian, “Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber,” Opt. Express 14, 7087–7092 (2006). [CrossRef]
  6. X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33, 908–910 (2008). [CrossRef]
  7. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300  mW narrow-linewidth single frequency fiber laser at 1.5  μm,” Opt. Express 18, 1249–1254 (2010). [CrossRef]
  8. J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett. 89, 101127 (2006). [CrossRef]
  9. L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “Photo-thermal growth of unsaturated and saturated Bragg gratings in phosphate glass fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (OSA, 2010), paper BTuB1.
  10. A. Schülzgen, L. Li, D. Nguyen, C. Spiegelberg, R. M. Rogojan, A. Laronche, J. Albert, and N. Peyghambarian, “Distributed feedback fiber laser pumped by multimode laser diodes,” Opt. Lett. 33, 614–616 (2008). [CrossRef]
  11. L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1  W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett. 92, 051111 (2008). [CrossRef]
  12. P. Hofmann, A. Pirson-Chavez, A. Schülzgen, L. Xiong, A. Laronche, J. Albert, and N. Peyghambarian, “Low-noise single frequency all phosphate fiber laser,” Proc. SPIE 8039, 803911 (2011). [CrossRef]
  13. S. Pradhan, G. E. Town, and K. J. Grant, “Dual-wavelength DBR fiber laser,” IEEE Photon. Technol. Lett. 18, 1741–1743 (2006). [CrossRef]
  14. Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006). [CrossRef]
  15. Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18, 1964–1966 (2006). [CrossRef]
  16. G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010). [CrossRef]
  17. L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, “Beating frequency tunable dual-wavelength erbium-doped fiber laser with one fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1453–1455 (2004). [CrossRef]
  18. S. Feng, O. Xu, S. Lu, X. Mao, T. Ning, and S. Jian, “Single-polarization, switchable dual-wavelength erbium-doped fiber laser with two polarization-maintaining fiber Bragg gratings,” Opt. Express 16, 11830–11835 (2008). [CrossRef]
  19. W. Liu, M. Jiang, D. Chen, S. He, and S. Member, “Dual-wavelength single-longitudinal-mode polarization-maintaining fiber laser and its application in microwave generation,” J. Lightwave Technol. 27, 4455–4459 (2009). [CrossRef]
  20. P. Rugeland, Z. Yu, O. Tarasenko, G. Tengstrand, and W. Margulis, “Tunable photonic microwave generation based on a novel dual-polarization fiber laser cavity,” IEEE Photon. Technol. Lett. 23, 1878–1880 (2011). [CrossRef]
  21. X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, “A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Opt. Express 17, 21773–21781 (2009). [CrossRef]
  22. B. Lin, S. Chuan Tjin, M. Jiang, and P. Shum, “Tunable microwave generation based on a dual-wavelength fiber laser with an inverse-Gaussian apodized fiber Bragg grating,” Appl. Opt. 50, 4912–4916 (2011). [CrossRef]
  23. S. Pan, X. Zhao, and C. Lou, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier,” Opt. Lett. 33, 764–766 (2008). [CrossRef]
  24. B. Lin, S. C. Tjin, H. Zhang, D. Tang, J. Hao, B. Dong, and S. Liang, “Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser using an inverse-Gaussian apodized fiber Bragg grating filter and a low-gain semiconductor optical amplifier,” Appl. Opt. 49, 6855–6860 (2010). [CrossRef]
  25. M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Tunable Terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser,” Opt. Express 19, 779–786 (2011). [CrossRef]
  26. M. A. Ummy, N. Madamopoulos, M. Razani, A. Hossain, and R. Dorsinville, “Switchable dual-wavelength SOA-based fiber laser with continuous tunability over the C-band at room-temperature,” Opt. Express 20, 23367–23373 (2012). [CrossRef]
  27. L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “A short dual-wavelength DBR phosphate fiber laser,” in CLEO: 2011—Laser Applications to Photonic Applications (OSA, 2011), paper CTuI3.
  28. Y. Liu, L. Wei, and J. W. Y. Lit, “Transmission loss of phase-shifted fiber Bragg gratings in lossy materials: a theoretical and experimental investigation,” Appl. Opt. 46, 6770–6773 (2007). [CrossRef]
  29. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry–Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14, 6394–6399 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited