OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 18 — Jun. 20, 2014
  • pp: 4049–4060

Enhanced phase unwrapping algorithm based on unscented Kalman filter, enhanced phase gradient estimator, and path-following strategy

XianMing Xie and YingHui Li  »View Author Affiliations


Applied Optics, Vol. 53, Issue 18, pp. 4049-4060 (2014)
http://dx.doi.org/10.1364/AO.53.004049


View Full Text Article

Enhanced HTML    Acrobat PDF (2009 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents an enhanced phase unwrapping algorithm by combining an unscented Kalman filter, an enhanced local phase gradient estimator based on an amended matrix pencil model, and a path-following strategy. This technology is able to accurately unwrap seriously noisy wrapped phase images by applying the unscented Kalman filter to simultaneously perform noise suppression and phase unwrapping along the path from the high-quality region to the low-quality region of the wrapped phase images. Results obtained with synthetic data and real data validate the effectiveness of the proposed method and show improved performance of this new algorithm with respect to some of the most used algorithms.

© 2014 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry
(100.3175) Image processing : Interferometric imaging
(100.5088) Image processing : Phase unwrapping

ToC Category:
Image Processing

History
Original Manuscript: February 25, 2014
Revised Manuscript: May 19, 2014
Manuscript Accepted: May 20, 2014
Published: June 19, 2014

Citation
XianMing Xie and YingHui Li, "Enhanced phase unwrapping algorithm based on unscented Kalman filter, enhanced phase gradient estimator, and path-following strategy," Appl. Opt. 53, 4049-4060 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-18-4049


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithm, and Software (Wiley, 1998).
  2. H. Y. H. Huang, L. Tian, and Z. Zhang, “Path-independent phase unwrapping using phase gradient and total-variation (TV) denoising,” Opt. Express 20, 14075–14089 (2012). [CrossRef]
  3. H. Y. Wang, F. F. Liu, and Q. F. Zhu, “Improvement of phase unwrapping algorithm based on image segmentation and merging,” Opt. Commun. 308, 218–223 (2013). [CrossRef]
  4. B. Osmanoglu, T. H. Dixon, S. Wdowinski, and E. Cabral-Cano, “On the importance of path for phase unwrapping in synthetic aperture radar interferometry,” Appl. Opt. 50, 3205–3220 (2011). [CrossRef]
  5. M. Zhao, L. Huang, Q. C. Zhang, X. Y. Su, A. Asundi, and Q. Kemao, “Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies,” Appl. Opt. 50, 6214–6224 (2011). [CrossRef]
  6. J. Langley and Q. Zhao, “Unwrapping magnetic resonance phase maps with Chebyshev polynomials,” Magn. Reson. Imaging 27, 1293–1301 (2009). [CrossRef]
  7. S. S. Gorthi, G. Rajshekhar, and P. Rastogi, “Strain estimation in digital holographic interferometry using piecewise polynomial phase approximation based method,” Opt. Express 18, 560–565 (2010). [CrossRef]
  8. S. Fang, L. Meng, L. Wang, P. Yang, and M. Komori, “Quality-guided phase unwrapping algorithm based on reliability evaluation,” Appl. Opt. 50, 5446–5452 (2011). [CrossRef]
  9. Y. G. Lu, X. Z. Wang, and G. T. He, “Phase unwrapping based on branch cut placing and reliability ordering,” Opt. Eng. 44, 055601 (2005). [CrossRef]
  10. N. H. Ching, D. Rosenfeld, and M. Braun, “Two-dimensional phase unwrapping using a minimum spanning tree algorithm,” IEEE Trans. Image Process. 1, 355–365 (1992). [CrossRef]
  11. R. M. Goldstein, H. A. Zerber, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988). [CrossRef]
  12. C. De Veuster, P. Slangen, Y. Renotte, L. Berwart, and Y. Lion, “Disk-growing algorithm for phase-map unwrapping: application to speckle interferograms,” Appl. Opt. 35, 240–247 (1996). [CrossRef]
  13. W. Xu and I. Cumming, “A region-growing algorithm for InSAR phase unwrapping,” IEEE Trans. Geosci. Remote Sens. 37, 124–134 (1999). [CrossRef]
  14. M. Costantini, “A novel phase unwrapping method based on network programming,” IEEE Trans. Geosci. Remote Sens. 36, 813–821 (1998). [CrossRef]
  15. T. J. Flynn, “Two dimensional phase unwrapping with mini-mum weighted discontinuity,” J. Opt. Soc. Am. A 14, 2692–2701 (1997). [CrossRef]
  16. G. Fornaro, G. Franceshetti, and R. Lanari, “Interferometric SAR phase unwrapping using Greens formulation,” IEEE Trans. Geosci. Remote Sens. 34, 720–727 (1996). [CrossRef]
  17. D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107–117 (1994). [CrossRef]
  18. G. H. Kaufmann, G. E. Galizzi, and P. D. Ruiz, “Evaluation of a preconditioned conjugate-gradient algorithm for weighted least- squares unwrapping of digital speckle-pattern interferometry phase maps,” Appl. Opt. 37, 3076–3084 (1998). [CrossRef]
  19. J. Arines, “Least-squares modal estimation of wrapped phases: application to phase unwrapping,” Appl. Opt. 42, 3373–3378 (2003). [CrossRef]
  20. Y. G. Lua, X. Z. Wang, and X. P. Zhang, “Weighted least-squares phase unwrapping algorithm based on derivative variance correlation map,” Optik 118, 62–66 (2007). [CrossRef]
  21. X. M. Xie and Y. M. Pi, “Multi-baseline phase unwrapping algorithm based on the unscented Kalman filter,” IET Radar Sonar Navig. 5, 296–304 (2011). [CrossRef]
  22. J. F. Weng and Y. L. Lo, “Integration of robust filters and phase unwrapping algorithms for image reconstruction of objects containing height discontinuities,” Opt. Express 20, 10896–10920 (2012). [CrossRef]
  23. J. C. Estrada, M. Servin, and J. A. Quiroga, “Noise robust linear dynamic system for phase unwrapping and smoothing,” Opt. Express 19, 5126–5133 (2011). [CrossRef]
  24. M. A. Navarro, J. C. Estrada, M. Servin, J. A. Quiroga, and J. Vargas, “Fast two-dimensional simultaneous phase unwrapping and low-pass filtering,” Opt. Express 20, 2556–2561 (2012). [CrossRef]
  25. J. J. Martinez-Espla, T. Martinez-Marin, and J. M. Lopez-Sanchez, “A particle filter approach for InSAR phase filtering and unwrapping,” IEEE Trans. Geosci. Remote Sens. 47, 1197–1211 (2009). [CrossRef]
  26. H. Nies, O. Loffeld, and W. Robert, “Phase unwrapping using 2D-Kalman filter potential and limitations,” in IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2008), paper IV1213.
  27. O. Loffeld, H. Nies, S. Knedlik, and W. Yu, “Phase unwrapping for SAR interferometry: a data fusion approach by Kalman filtering,” IEEE Trans. Geosci. Remote Sens. 46, 47–58 (2008). [CrossRef]
  28. X. M. Xie and Y. M. Pi, “Phase noise filtering and phase unwrapping method based on unscented Kalman filter,” J. Syst. Eng. Electron. 22, 365–372 (2011).
  29. I. Gurov and M. Volynsky, “Interference fringe analysis based on recurrence computational algorithms,” Opt. Lasers Eng. 50, 514–521 (2012). [CrossRef]
  30. T. Emmanuel and N. Jean-Marie, “Improving phase unwrapping techniques by the use of local frequency estimates,” IEEE Trans. Geosci. Remote Sens. 36, 1963–1972 (1998). [CrossRef]
  31. E. W. Daniel, “Improved SAR interferometric processing using local phase slope correction,” Proc. SPIE 5427, 103–107 (2007).
  32. U. Spagnolini, “2D phase unwrapping and instantaneous frequency estimation,” IEEE Trans. Geosci. Remote Sens. 33, 579–589 (1994). [CrossRef]
  33. Y. Hua, “Estimating two-dimensional frequencies by matrix enhancement and matrix pencil,” IEEE Trans. Signal Process. 40, 2267–2280 (1992). [CrossRef]
  34. B. Tang, “Novel method for two-dimensional sinusoidal frequency efficient estimation,” J. Southwest Petroleum Inst. 20, 78–80 (1998).
  35. E. A. Wan and R. V. Merwe, “The unscented Kalman Filter for nonlinear estimation,” in The IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (IEEE, 2000), pp. 153–158.
  36. S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proc. IEEE 92, 401–422 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited