OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 19 — Jul. 1, 2014
  • pp: 4100–4116

Optimizing three-frequency Na, Fe, and He lidars for measurements of wind, temperature, and species density and the vertical fluxes of heat and constituents

Chester S. Gardner and Fabio A. Vargas  »View Author Affiliations


Applied Optics, Vol. 53, Issue 19, pp. 4100-4116 (2014)
http://dx.doi.org/10.1364/AO.53.004100


View Full Text Article

Enhanced HTML    Acrobat PDF (562 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The measurement accuracies of three-frequency resonance fluorescence Doppler lidars are limited by photon noise and uncertainties in the laser frequency and line width. We analyze the performance of Na, Fe, and He lidars using a new technique, which incorporates precise information about the absorption spectrum of the species and the pulse spectrum of the lasers. We derive the measurement errors associated with photon noise, laser frequency errors, and laser line width errors. Optimizing the lidar design, based upon the measurement requirements, can improve system performance by reducing the required integration times, enabling measurements to be made in less time or at higher altitudes where the densities and signal levels are smaller. The optimum frequency shift for observing heat and constituent transport velocities is 689 MHz (580 MHz) at night (day) for Na lidars and 774 MHz (597 MHz) for Fe lidars. The optimum frequency shift for observing winds, temperature, and He densities is 3.66 GHz (3.16 GHz) at night (day) for He lidars.

© 2014 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.3640) Atmospheric and oceanic optics : Lidar
(030.5260) Coherence and statistical optics : Photon counting
(290.1310) Scattering : Atmospheric scattering
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: March 12, 2014
Manuscript Accepted: May 7, 2014
Published: June 23, 2014

Citation
Chester S. Gardner and Fabio A. Vargas, "Optimizing three-frequency Na, Fe, and He lidars for measurements of wind, temperature, and species density and the vertical fluxes of heat and constituents," Appl. Opt. 53, 4100-4116 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-19-4100


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. S. Gardner and W. Yang, “Measurements of the dynamical cooling rate associated with the vertical transport of heat by dissipating gravity waves in the mesopause region at the Starfire Optical Range, New Mexico,” J. Geophys. Res. 103, 16909–16926 (1998). [CrossRef]
  2. J. Yue, C.-Y. She, and H.-L. Liu, “Large wind shears and stabilities in the mesopause region observed by Na wind-temperature lidar at mid-latitude,” J. Geophys. Res. 115, A10307 (2010). [CrossRef]
  3. F. J. Lübken, J. Höffner, T. P. Viehl, B. Kaifler, and R. J. Morris, “First measurements of thermal tides in the summer mesopause region at Antarctic latitudes,” Geophys. Res. Lett. 38, L24806 (2011). [CrossRef]
  4. R. E. Bills, C. S. Gardner, and S. F. Franke, “Na Doppler/temperature lidar: initial mesopause region observations and comparison with the Urbana MF radar,” J. Geophys. Res. 96, 22701–22707 (1991). [CrossRef]
  5. C. Y. She and J. R. Yu, “Simultaneous three-frequency Na lidar measurements of radial wind and temperature in the mesopause region,” Geophys. Res. Lett. 21, 1771–1774 (1994). [CrossRef]
  6. J. Lautenbach and J. Höffner, “Scanning iron temperature lidar for mesospheric temperature observation,” Appl. Opt. 43, 4559–4563 (2004). [CrossRef]
  7. T. Pfrommer and P. Hickson, “High-resolution lidar observations of mesospheric sodium and implications for adaptive optics,” J. Opt. Soc. Am. A 27, A97–A105 (2010). [CrossRef]
  8. C. S. Gardner and A. Z. Liu, “Measuring eddy heat and constituent fluxes with high-resolution Na and Fe Doppler lidars,” J. Geophys. Res. (in press).
  9. J. Höffner and J. S. Friedman, “The mesospheric metal layer topside: examples of simultaneous metal observations,” J. Atmos. Sol. Terr. Phys. 67, 1226–1237 (2005). [CrossRef]
  10. X. Chu, Z. Yu, C. S. Gardner, C. Chen, and W. Fong, “Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110–155  km) at McMurdo (77.8°S, 166.7°E), Antarctica,” Geophys. Res. Lett. 38, L23807 (2011).
  11. A. J. Gerrard, T. J. Kane, D. D. Meisel, J. P. Thayer, and R. B. Kerr, “Investigation of a resonance lidar for measurement of thermospheric metastable helium,” J. Atmos. Sol. Terr. Phys. 59, 2023–2035 (1997). [CrossRef]
  12. C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow linewidth Yb fiber-amplified-based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009). [CrossRef]
  13. B. M. Welsh and C. S. Gardner, “Nonlinear resonant absorption effects on the design of resonance fluorescence lidars and laser guide stars,” Appl. Opt. 28, 4141–4152 (1989). [CrossRef]
  14. P. von der Gathen, “Saturation effects in Na lidar temperature measurements,” J. Geophys. Res. 96, 3679–3690 (1991). [CrossRef]
  15. R. E. Bills, C. S. Gardner, and C. Y. She, “Narrowband lidar technique for Na temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991). [CrossRef]
  16. C. Y. She, J. R. Yu, H. Latifi, and R. E. Bills, “High-spectral resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements,” Appl. Opt. 31, 2095–2106 (1992). [CrossRef]
  17. G. C. Papen, W. Pfenninger, and D. Simonich, “Sensitivity analysis of Na narrowband wind-temperature lidar systems,” Appl. Opt. 34, 480–498 (1995). [CrossRef]
  18. C. S. Gardner, “Performance capabilities of middle-atmosphere temperature lidars: comparison of Na, Fe, K, Ca, Ca+, and Rayleigh systems,” Appl. Opt. 43, 4941–4956 (2004). [CrossRef]
  19. X. Chu and G. C. Papen, “Resonance fluorescence lidar for measurements of the middle and upper atmosphere,” in Laser Remote Sensing, T. Fujii and T. Fukuchi, eds. (CRC Press, 2005), pp. 179–432.
  20. L. Su, R. L. Collins, D. A. Krueger, and C. Y. She, “Statistical analysis of sodium Doppler wind-temperature lidar measurements of vertical heat flux,” J. Atmos. Ocean. Technol. 25, 401–415 (2008). [CrossRef]
  21. A. Corney, Atomic and Laser Spectroscopy (Oxford, 1977).
  22. C. Y. She and J. R. Yu, “Doppler-free saturation fluorescence spectroscopy of Na atoms for atmospheric applications,” Appl. Opt. 34, 1063–1075 (1995). [CrossRef]
  23. S. Gangopadhyay, N. Melikechi, and E. E. Eyler, “Optical phase perturbations in nanosecond pulsed amplification and second harmonic generation,” J. Opt. Soc. Am. B 11, 231–241 (1994). [CrossRef]
  24. N. Melikechi, S. Gangopadhyay, and E. E. Eyler, “Phase dynamics in nanosecond pulsed dye laser amplification,” J. Opt. Soc. Am. B 11, 2402–2411 (1994). [CrossRef]
  25. T. Yuan, J. Yue, C. Y. She, J. P. Sherman, M. A. White, S. D. Harrell, P. E. Acott, and D. A. Kreuger, “Wind-bias correction method for narrowband sodium Doppler lidars using iodine absorption spectroscopy,” Appl. Opt. 48, 3988–3993 (2009). [CrossRef]
  26. M. S. Fee, K. Danzmann, and S. Chu, “Optical heterodyne measurement of pulsed lasers: toward high precision pulsed spectroscopy,” Phys. Rev. A 45, 4911–4924 (1992). [CrossRef]
  27. R. T. White, Y. He, B. J. Orr, M. Kono, and K. G. H. Baldwin, “Control of frequency chirp in nanosecond-pulsed laser spectroscopy. 1. Optical heterodyne chirp analysis techniques,” J. Opt. Soc. Am. B 21, 1577–1585 (2004). [CrossRef]
  28. X. Chu and W. Huang, “Fe Doppler-free spectroscopy and optical heterodyne detection for accurate frequency control of Fe-resonance Doppler lidar,” in Proceedings of 25th International Laser Radar Conference, St. Petersburg, Russia, July5–9 (Curran Associates, 2010), p. 1374.
  29. C. S. Gardner and A. Z. Liu, “Wave-induced transport of atmospheric constituents and its effect on the mesospheric Na layer,” J. Geophys. Res. 115, D20302 (2010). [CrossRef]
  30. K. H. Fricke and U. von Zahn, “Mesopause temperature derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985). [CrossRef]
  31. L. S. Waldrop, R. B. Kerr, S. A. Gonzalez, M. P. Sulzer, J. Noto, and F. Kamalabadi, “Generation of metastable helium and the 1083  nm emission in the upper thermosphere,” J. Geophys. Res. 110, A08304 (2005). [CrossRef]
  32. C. S. Gardner and A. Z. Liu, “Seasonal variations of the vertical fluxes of heat and horizontal momentum in the mesopause region at Starfire Optical Range, New Mexico,” J. Geophys. Res. 112, D09113 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited