OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 19 — Jul. 1, 2014
  • pp: 4117–4122

Variable-length cell for studies of gas spectra with extremely short optical paths

Sébastien B. Morales, Edouard Pangui, Xavier Landsheere, Ha Tran, and Jean-Michel Hartmann  »View Author Affiliations

Applied Optics, Vol. 53, Issue 19, pp. 4117-4122 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1383 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a cell for studies of light transmission through very strongly absorbing gases. It uses a fixed window and a mirror, parallel to the latter and attached to a micrometric linear motion feedthrough monitoring mirror-window distances from 0 to a couple of centimeters. This device is tested by recording CO2 gas spectra near 4.3 μm using a Fourier transform spectrometer. Their analysis shows that optical-path lengths between 20 and 2000 μm have been obtained. This now enables spectroscopic measurements of self-broadening coefficients of O16C12O16 lines in the ν3 band, for instance, and opens perspectives for optical soundings of thin films of porous materials.

© 2014 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6390) Spectroscopy : Spectroscopy, molecular

ToC Category:

Original Manuscript: March 21, 2014
Revised Manuscript: May 19, 2014
Manuscript Accepted: May 21, 2014
Published: June 23, 2014

Sébastien B. Morales, Edouard Pangui, Xavier Landsheere, Ha Tran, and Jean-Michel Hartmann, "Variable-length cell for studies of gas spectra with extremely short optical paths," Appl. Opt. 53, 4117-4122 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Sarkisyan, G. Hakhumyan, A. Sargsyan, R. Mirzoyan, C. Leroy, and Y. Pashayan-Leroy, “Laser spectroscopy with nanometric cells containing atomic vapor of metal: influence of buffer gas,” Proc. SPIE 7747, 77470C (2011). [CrossRef]
  2. J. Keaveney, A. Sargsyan, U. Krohn, I. G. Hughes, D. Sarkisyan, and C. S. Adams, “Cooperative lamb shift in an atomic vapor layer of nanometer thickness,” Phys. Rev. Lett. 108, 173601 (2012). [CrossRef]
  3. J.-M. Hartmann, V. Sironneau, C. Boulet, T. Svensson, J. T. Hodges, and C. T. Xu, “Collisional broadening and spectral shapes of absorption lines of free and nanopore-confined O2 gas,” Phys. Rev. A 87, 032510 (2013). [CrossRef]
  4. J.-M. Hartmann, C. Boulet, J. Vander Auwera, H. Hamzaoui, B. Capoen, and M. Bouazaoui, “Line broadening of confined CO gas. From molecule-wall to molecule-molecule collisions with pressure,” J. Chem. Phys. 140, 064302 (2014). [CrossRef]
  5. T. Svensson, E. Adolfsson, M. Burresi, R. Savo, C. T. Xu, D. S. Wiersma, and S. Svanberg, “Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes,” Appl. Phys. B 110, 147–154 (2013). [CrossRef]
  6. J. Vander Auwera, N. H. Ngo, H. Hamzaoui, B. Capoen, M. Bouazaoui, P. Ausset, C. Boulet, and J.-M. Hartmann, “Infrared absorption by molecular gases as a probe of nanoporous silica xerogel and molecule-surface collisions: low pressure results,” Phys. Rev. A 88, 042506 (2013). [CrossRef]
  7. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013). [CrossRef]
  8. CaF2 refraction and absorption data, http://www.lightmachinery.com/Materials/H0607_CaF2_Product_Sheet.pdf .
  9. Gold mirror reflectivity data, http://www.thorlabs.com/NewGroupPage9.cfm?objectgroup_id=6627 .
  10. J.-M. Hartmann, C. Boulet, and D. Robert, Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Applications (Elsevier, 2008).
  11. J. Lamouroux, L. Régalia, X. Thomas, J. Vander Auwera, R. R. Gamache, R. R. Gamache, and J.-M. Hartmann, “CO2 line-mixing database and software update and its tests in the 2.1  μm and 4.3  μm regions,” in preparation for submission to J. Quant. Spectrosc. Radiat. Transfer.
  12. V. M. Devi, D. C. Benner, L. R. Brown, C. E. Miller, and R. A. Toth, “Line mixing and speed dependence in CO2 at 6227.9  cm−1: constrained multispectrum analysis of intensities and line shapes in the 30013←00001 band,” J. Mol. Spectrosc. 245, 52–80 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited