OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 19 — Jul. 1, 2014
  • pp: 4123–4127

Closely spaced dual-wavelength fiber laser using an ultranarrow bandwidth optical filter for low radio frequency generation

H. Ahmad, N. F. Razak, M. Z. Zulkifli, F. D. Muhammad, Y. Munajat, and S. W. Harun  »View Author Affiliations


Applied Optics, Vol. 53, Issue 19, pp. 4123-4127 (2014)
http://dx.doi.org/10.1364/AO.53.004123


View Full Text Article

Enhanced HTML    Acrobat PDF (481 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A dual-wavelength (DW) fiber laser with a closely spaced single longitudinal mode (SLM) output is proposed and demonstrated. The proposed fiber laser utilizes a conventional fiber Bragg grating with a center wavelength of about 1546.8 nm in conjunction with an ultranarrow bandwidth tunable optical filter to generate the desired DW SLM output. Observations with a very high resolution optical spectrum analyzer, which was capable of achieving resolutions up to 0.16 pm, revealed detailed spectral characteristics not characteristically seen before. A channel spacing of up to 58 nm was realized, and spacing as small as 2 pm was achieved. The minimum channel spacing and its resulting beat frequency are the narrowest observed yet to the best of our knowledge for a DW fiber laser at room temperature.

© 2014 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2410) Fiber optics and optical communications : Fibers, erbium
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.5625) Fiber optics and optical communications : Radio frequency photonics
(060.2840) Fiber optics and optical communications : Heterodyne

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 17, 2014
Revised Manuscript: May 17, 2014
Manuscript Accepted: May 18, 2014
Published: June 23, 2014

Citation
H. Ahmad, N. F. Razak, M. Z. Zulkifli, F. D. Muhammad, Y. Munajat, and S. W. Harun, "Closely spaced dual-wavelength fiber laser using an ultranarrow bandwidth optical filter for low radio frequency generation," Appl. Opt. 53, 4123-4127 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-19-4123


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009). [CrossRef]
  2. A. Rosen, M. A. Stuchly, and A. V. Vorst, “Applications of RF/microwaves in medicine,” IEEE Trans. Microwave Theor. Tech. 50, 963–974 (2002). [CrossRef]
  3. N. J. Gomes, M. Morant, A. Alphones, B. Cabon, J. E. Mitchell, C. Lethien, and S. Iezekiel, “Radio-over-fiber transport for the support of wireless broadband services,” J. Opt. Netw. 8, 156–178 (2009). [CrossRef]
  4. M. Feng, S. C. Shen, D. C. Caruth, and A. J. Huang, “Device technologies for RF front-end circuits in next-generation wireless communications,” Proc. IEEE 92, 354–375 (2004). [CrossRef]
  5. P. Bouyer, T. L. Gustavson, K. G. Haritos, and M. A. Kasevich, “Dual-frequency Brillouin fiber laser for optical generation of tunable low-noise radio frequency/microwave frequency,” Opt. Lett. 21, 1502–1504 (1996). [CrossRef]
  6. H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, “Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module,” IEEE Photon. Technol. Lett. 18, 2344–2346 (2006). [CrossRef]
  7. U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 16–18 (2008).
  8. J. Liu, L. Zhan, P. Xiao, Q. Shen, G. Wang, Z. Wu, X. Liu, and L. Zhang, “Optical generation of tunable microwave signal using cascaded Brillouin fiber laser,” IEEE Photon. Technol. Lett. 24, 22–24 (2012). [CrossRef]
  9. G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wideband continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theor. Tech. 53, 3090–3097 (2005). [CrossRef]
  10. X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theor. Tech. 54, 804–809 (2006). [CrossRef]
  11. A. W. Al-Alimi, M. H. Al-Mansoori, A. F. Abas, M. A. Mahdi, F. R. M. Adikan, and M. Ajiya, “A stabilized tunable dual wavelength erbium-doped fiber laser with equal output power,” Laser Phys. 19, 1850–1853 (2009). [CrossRef]
  12. L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1  W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett. 92, 051111 (2008). [CrossRef]
  13. H. Ahmad, A. A. Latif, M. I. M. A. Khudus, A. Z. Zulkifli, M. Z. Zulkifli, K. Thambiratnam, and S. W. Harun, “Highly stable graphene-assisted tunable dual-wavelength erbium-doped fiber laser,” Appl. Opt. 52, 818–823 (2013). [CrossRef]
  14. H. Ahmad, A. A. Latif, J. M. Talib, and S. W. Harun, “Tunable, low frequency microwave generation from AWG based closely-spaced dual-wavelength single-longitudinal-mode fibre laser,” J. Eur. Opt. Soc. 8, 1–5 (2013). [CrossRef]
  15. H. Zhu, C. Tu, T. Lei, W. Guo, Y. Li, F. Lu, X. Dong, and D. Wei, “Dual-wavelength narrow-linewidth light source with ultranarrow wavelength spacing based on the pump-induced thermal effects in an Er-Yb-codoped distributed-Bragg-reflector fiber laser,” Opt. Eng. 47, 094301 (2008). [CrossRef]
  16. Y. Geng, X. Tan, X. Li, and J. Yao, “Compact and widely tunable terahertz source based on a dual-wavelength intracavity optical parametric oscillation,” Appl. Phys. B 99, 181–185 (2010). [CrossRef]
  17. T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36, 1414–1416 (2000). [CrossRef]
  18. M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch,” Dual tunable wavelength Er, Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10, 1554–1556 (1998). [CrossRef]
  19. J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006). [CrossRef]
  20. D. Liu, N. Q. Ngo, X. Y. Dong, S. C. Tjin, and P. Shum, “A stable dual-wavelength fiber laser with tunable wavelength spacing using a polarization-maintaining linear cavity,” Appl. Phys. B 81, 807–811 (2005). [CrossRef]
  21. J. Xiu-Jie, L. Yan-Ge, S. Li-Bin, G. Zhan-Cheng, F. Sheng-Gui, L. Feng-Nian, Y. Shu-Zhong, and D. Xiao-Yi, “Realization of stable narrow linewidth dual-wavelength lasing in an erbium-doped fibre laser by cleaving the wavelength-selective filter spectrum,” Chin. Phys. Lett 23, 2092–2094 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited