OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 2 — Jan. 10, 2014
  • pp: 237–243

Research on controlling thermal deformable mirror’s influence functions via manipulating thermal fields

Qiao Xue, Lei Huang, Dongxia Hu, Ping Yan, and Mali Gong  »View Author Affiliations


Applied Optics, Vol. 53, Issue 2, pp. 237-243 (2014)
http://dx.doi.org/10.1364/AO.53.000237


View Full Text Article

Enhanced HTML    Acrobat PDF (647 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For thermal deformable mirrors (DMs), the thermal field control is important because it will decide aberration correction effects. In order to better manipulate the thermal fields, a simple water convection system is proposed. The water convection system, which can be applied in thermal field bimetal DMs, shows effective thermal fields and influence-function controlling abilities. This is verified by the simulations and the contrast experiments of two prototypes: one of which utilizes air convection, the other uses water convection. Controlling the thermal fields will greatly promote the influence-function adjustability and aberration correction ability of thermal DMs.

© 2014 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(220.1000) Optical design and fabrication : Aberration compensation
(230.4040) Optical devices : Mirrors
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: October 18, 2013
Revised Manuscript: December 3, 2013
Manuscript Accepted: December 4, 2013
Published: January 9, 2014

Citation
Qiao Xue, Lei Huang, Dongxia Hu, Ping Yan, and Mali Gong, "Research on controlling thermal deformable mirror’s influence functions via manipulating thermal fields," Appl. Opt. 53, 237-243 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-2-237


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Dainty, A. V. Koryabin, and A. V. Kudryashov, “Low-order adaptive deformable mirror,” Appl. Opt. 37, 4663–4668 (1998). [CrossRef]
  2. M. A. Ealey and J. F. Washeba, “Continuous facesheet low voltage deformable mirrors,” Opt. Eng. 29, 1191–1198 (1990). [CrossRef]
  3. K. Uchino, Y. Tsuchiya, S. Nomura, T. Sato, H. Ishikawa, and O. Ikeda, “Deformable mirror using the PMN electrostrictor,” Appl. Opt. 20, 3077–3080 (1981). [CrossRef]
  4. G. Brusa and C. D. Vecchio, “Design of an adaptive secondary mirror: a global approach,” Appl. Opt. 37, 4656–4662 (1998). [CrossRef]
  5. O. Cugat, S. Basrour, C. Divoux, P. Mounaix, and G. Reyne, “Deformable magnetic mirror for adaptive optics: technological aspects,” Sens. Actuators A 89, 1–9 (2001). [CrossRef]
  6. T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” J. Sel. Top. Quantum Electron. 5, 83–89 (1999). [CrossRef]
  7. G. Vdovin and M. Loktev, “Deformable mirror with thermal actuators,” Opt. Lett. 27, 677–679 (2002). [CrossRef]
  8. C. A. Caicedo, A. Wirth, G. LaRosa, R. Coerver, J. Wilt, and M. Taylor, “Thermal deformable mirror,” Proc. SPIE 6272, 627252 (2006). [CrossRef]
  9. S. K. Ravensbergen, P. C. J. N. Rosielle, and M. Steinbuch, “Deformable mirrors with thermo-mechanical actuators for extreme ultraviolet lithography, realization and validation,” Precis. Eng. 37, 353–363 (2013). [CrossRef]
  10. L. Truong, E. F. Borra, R. Bergamasco, N. Caron, P. Laird, and A. Ritcey, “Nanoengineered liquid mirrors shaped by thermal fields,” Appl. Opt. 44, 1595–1600 (2005). [CrossRef]
  11. B. Canuel, R. Day, E. Genin, P. La Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Classical Quantum Gravity 29, 085012 (2012). [CrossRef]
  12. M. Kasprzack, B. Canuel, F. Cavalier, R. Day, E. Genin, J. Marque, D. Sentenac, and G. Vajente, “Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams,” Appl. Opt. 52, 2909–2916 (2013). [CrossRef]
  13. M. A. Arain, W. Z. Korth, L. F. Williams, R. M. Martin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Adaptive control of modal properties of optical beams using photothermal effects,” Opt. Express 18, 2767–2781 (2010). [CrossRef]
  14. R. Lawrence, D. Ottaway, M. Zucker, and P. Fritschel, “Active correction of thermal lensing through external radiative thermal actuation,” Opt. Lett. 29, 2635–2637 (2004). [CrossRef]
  15. D. Michel, T. Graf, H. J. Glur, W. Luthy, and H. P. Weber, “Thermo-optically driven adaptive mirror for laser applications,” Appl. Phys. B 79, 721–724 (2004). [CrossRef]
  16. F. Reinert and W. Lüthy, “Thermo-optically driven adaptive mirror based on thermal expansion: preparation and resolution,” Opt. Express 13, 10749–10753 (2005). [CrossRef]
  17. L. Huang, Q. Xue, P. Yan, M. L. Gong, Z. X. Feng, T. H. Li, and X. K. Ma, “A thermo-field bimetal deformable mirror for wave front correction in high power lasers,” Laser Phys. Lett. 11, 015001 (2014). [CrossRef]
  18. J. H. Lee, “A cooled deformable bimorph mirror for a high power laser,” J. Opt. Soc. Korea 10, 57–62 (2006). [CrossRef]
  19. S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Active mirrors for intra-cavity compensation of the aspherical thermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012). [CrossRef]
  20. S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37, 5033–5035 (2012). [CrossRef]
  21. Q. Xue, L. Huang, P. Yan, M. L. Gong, Z. X. Feng, Y. T. Qiu, T. H. Li, and G. F. Jin, “Research on the particular temperature-induced surface shape of NIF deformable mirror,” Appl. Opt. 52, 280–287 (2013). [CrossRef]
  22. C. Bruchmann, M. Appelfelder, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermo-mechanical properties of a deformable mirror with screen printed actuator,” Proc. SPIE 8253, 82530D (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited