OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 2 — Jan. 10, 2014
  • pp: 259–268

Improvement of the validity of the simplified modal method for designing a subwavelength dielectric transmission grating

Xufeng Jing, Junchao Zhang, Ying Tian, and Shangzhong Jin  »View Author Affiliations


Applied Optics, Vol. 53, Issue 2, pp. 259-268 (2014)
http://dx.doi.org/10.1364/AO.53.000259


View Full Text Article

Enhanced HTML    Acrobat PDF (1727 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To accurately and easily design the diffraction characteristics of a rectangular transmission grating under the illumination of Littrow mounting, the validity and limitation of the simplified modal method is evaluated by a comparison of diffraction efficiencies predicted by the modal approach to exact results calculated with rigorous coupled-wave analysis. The influence of the grating normalized period, the normalized groove depth, and the fill factor on the accuracy of the modal method is quantitatively determined. More importantly, the reflection effect of two propagating grating modes with the optical thin-film model and the nonsymmetrical Fabry–Perot model is proposed and applied in the modal method to improve the accuracy of the calculated diffraction efficiencies. Generally, it is found that the thin-film model of reflection loss is valid at the smaller normalized period, but the Fabry–Perot model can exactly calculate the reflection loss of grating modes at the larger normalized period. Based on the fact that the validity of the modal approach is determined independently of the incident wavelength, the exact design and analysis of grating diffraction elements can be implemented at different wavelengths by simply scaling the grating parameters. Moreover, the polarization effect of diffraction properties on the limitation of the modal method without and with the reflection loss of grating modes is clearly demonstrated.

© 2014 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1380) Diffraction and gratings : Binary optics
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1960) Diffraction and gratings : Diffraction theory
(050.2065) Diffraction and gratings : Effective medium theory

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 9, 2013
Revised Manuscript: November 28, 2013
Manuscript Accepted: December 6, 2013
Published: January 9, 2014

Citation
Xufeng Jing, Junchao Zhang, Ying Tian, and Shangzhong Jin, "Improvement of the validity of the simplified modal method for designing a subwavelength dielectric transmission grating," Appl. Opt. 53, 259-268 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-2-259

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited