OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 2 — Jan. 10, 2014
  • pp: 283–290

Analysis of adjusting effects of mounting force on frequency conversion of mounted nonlinear optics

Ruifeng Su, Haitao Liu, Yingchun Liang, and Lihua Lu  »View Author Affiliations

Applied Optics, Vol. 53, Issue 2, pp. 283-290 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (631 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Motivated by the need to increase the second harmonic generation (SHG) efficiency of nonlinear optics with large apertures, a novel mounting configuration with active adjusting function on the SHG efficiency is proposed and mechanically and optically studied. The adjusting effects of the mounting force on the distortion and stress are analyzed by the finite element methods (FEM), as well as the contribution of the distortion and stress to the change in phase mismatch, and the SHG efficiency are theoretically stated. Further on, the SHG efficiency is calculated as a function of the mounting force. The changing trends of the distortion, stress, and the SHG efficiency with the varying mounting force are obtained, and the optimal ones are figured out. Moreover, the mechanism of the occurrence of the optimal values is studied and the adjusting strategy is put forward. Numerical results show the robust adjustment of the mounting force, as well as the effectiveness of the mounting configuration, in increasing the SHG efficiency.

© 2014 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(190.0190) Nonlinear optics : Nonlinear optics
(190.4360) Nonlinear optics : Nonlinear optics, devices
(140.3515) Lasers and laser optics : Lasers, frequency doubled

ToC Category:
Nonlinear Optics

Original Manuscript: October 2, 2013
Revised Manuscript: November 23, 2013
Manuscript Accepted: December 5, 2013
Published: January 10, 2014

Ruifeng Su, Haitao Liu, Yingchun Liang, and Lihua Lu, "Analysis of adjusting effects of mounting force on frequency conversion of mounted nonlinear optics," Appl. Opt. 53, 283-290 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinrich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961). [CrossRef]
  2. D. Eimerl, “Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 95–139 (1987). [CrossRef]
  3. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276–3303 (2007). [CrossRef]
  4. Q. H. Zhu, W. G. Zheng, X. F. Wei, F. Jing, D. X. Hu, W. Zhou, B. Feng, J. J. Wang, Z. T. Peng, L. Q. Liu, Y. B. Chen, L. Ding, D. H. Lin, L. F. Guo, and Z. Dang, “Research and construction progress of SG-III laser facility,” Proc. SPIE 8786, 87861G (2013). [CrossRef]
  5. J. M. Auerbach, P. J. Wegner, S. A. Couture, D. Eimerl, R. L. Hibbard, D. Milam, M. A. Norton, P. K. Whitman, and L. A. Hackel, “Modeling of frequency doubling and tripling with measured crystal spatial refractive index nonuniformities,” Appl. Opt. 40, 1404–1411 (2001). [CrossRef]
  6. K. Li and B. Zhang, “Analysis of broadband third harmonic generation with non-collinear angular dispersion in KDP crystals,” Opt. Commun. 281, 2271–2278 (2008). [CrossRef]
  7. H. J. Zhao, Z. F. Cheng, and D. P. Shi, “Influence of third-order nonlinear and phase variations on third harmonic generation,” Optik 119, 161–166 (2008). [CrossRef]
  8. C. E. Barker, J. M. Auerbach, C. H. Adam, S. E. Bumpas, R. L. Hibbard, C. L. Lee, D. H. Roberts, J. H. Campbell, P. J. Wegner, B. M. Van Wonterghem, and J. A. Caird, “National Ignition Facility frequency converter development,” Proc. SPIE 3047, 197 (1997). [CrossRef]
  9. J. M. Auerbach, C. E. Barker, S. A. Couture, D. Eimerl, J. J. De Yoreo, L. A. Hackel, R. L. Hibbard, L. W. Liou, M. A. Norton, S. A. Perfect, and P. J. Wegner, “Modeling of frequency doubling and tripling with converter refractive index spatial non-uniformities due to gravitational sag,” Proc. SPIE 3492, 472 (1999). [CrossRef]
  10. R. L. Hibbard, M. A. Norton, and P. J. Wegner, “The design of precision mounts for optimizing the conversion efficiency of KDP crystals for the National Ignition Facility,” Lawrence Livermore National Laboratory Report, (1998).
  11. O. Lubin and C. Gouedard, “Modeling of the effects of KDP crystals gravity sag on third harmonic generation,” Proc. SPIE 3492, 802–808 (1999). [CrossRef]
  12. J. Schwarz, M. Ramsey, I. Smith, D. Headley, and J. Porter, “Low order adaptive optics on Z-Beamlet using a single actuator deformable mirror,” Opt. Commun. 264, 203–212 (2006). [CrossRef]
  13. J. Schwarz, M. Geissel, P. Rambo, and J. Porter, “Development of a variable focal length concave mirror for on-shot thermal lens correction in rod amplifiers,” Opt. Express 14, 10957–10969 (2006). [CrossRef]
  14. G. Figueira, J. Wemans, H. Pires, N. Lope, and L. Cardoso, “Single adjuster deformable mirror with four contact points for simultaneous correction of astigmatism and defocus,” Opt. Express 15, 5664–5673 (2007). [CrossRef]
  15. U. J. Greiner and H. H. Klingenberg, “Thermal lens correction of diode pumped Nd: YAG laser of high TEM00 power by an adjustable curvature mirror,” Opt. Lett. 19, 1207–1209 (1994). [CrossRef]
  16. A. Nordt, M. Jacoby, B. Biggs, T. Kvamme, and T. Cahoon, “NIRCam fold mirror and mount designs,” Proc. SPIE 6692, 66920F (2007). [CrossRef]
  17. B. Saggin, M. Tarabini, and D. Scaccabarozzi, “Infrared optical element mounting techniques for wide temperature ranges,” Appl. Opt. 49, 542–548 (2010). [CrossRef]
  18. E. T. Kvamme and M. Jacoby, “A second generation low stress cryogenic mount for space-borne lithium fluoride optics,” Proc. SPIE 6692, 66920I (2007). [CrossRef]
  19. G. Kroes, J. Kragt, R. Navarro, E. Elswijk, and H. Hanenburg, “Opto-mechanical design for transmission optics in cryogenic IR instrumentation,” Proc. SPIE 7018, 70182D (2008). [CrossRef]
  20. A. L. Li, X. C. Jiang, J. F. Sun, Y. M. Bia, L. J. Wang, and L. R. Liu, “Radial support analysis for large-aperture rotating wedge prism,” Opt. Laser Technol. 44, 1881–1888 (2012). [CrossRef]
  21. A. H. Li, Z. Luan, Y. M. Bian, and L. R. Liu, “Integrated analysis of strap mount for a circular mirror,” Optik 122, 1584–1587 (2011). [CrossRef]
  22. D. M. Stubbs, C. L. Hom, H. C. Holmes, J. C. Morrett, O. F. Lindstrom, J. W. Irwin, L. A. Ryder, T. T. Hix, J. A. Bonvallet, H. S. Hu, I. V. Chapman, C. Lomax, E. T. Kvamme, G. S. Feller, and M. M. Haynes, “Adhesive bond cryogenic lens cell margin of safety test,” Proc. SPIE 8152, 81520N (2011). [CrossRef]
  23. S. Bonora and L. Poletto, “Push–pull membrane mirrors for adaptive optics,” Opt. Express 14, 11935–11944 (2006). [CrossRef]
  24. S. Bonora, “Distributed actuators deformable mirror for adaptive optics,” Opt. Commun. 284, 3467–3473 (2011). [CrossRef]
  25. M. S. Roth, V. Romano, and T. Feurer, “Self-compensating amplifier design for cw and Q-switched high-power Nd: YAG lasers,” Opt. Express 14, 2191–2196 (2006). [CrossRef]
  26. M. S. Roth, E. W. Wyss, H. Glur, and H. P. Weber, “Generation of radially polarized beams in a Nd:YAG laser with self-adaptive overcompensation of the thermal lens,” Opt. Lett. 30, 1665–1667 (2005). [CrossRef]
  27. Z. L. Xu, Elasticity (Higher Education, 2006), Chap. 13. (in Chinese).
  28. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optics Crystals (Springer, 1999), pp. 48–65.
  29. J. Q. Yao, Nonlinear Optical Frequency Conversion and Laser Tuning Technology (Science, 1995), Chap. 1. (in Chinese).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited