OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 20 — Jul. 10, 2014
  • pp: 4413–4419

1  kW peak power, 110  ns single-frequency thulium doped fiber amplifier at 2050  nm

Erik Lucas, Laurent Lombard, Yves Jaouën, Sylvain Bordais, and Guillaume Canat  »View Author Affiliations


Applied Optics, Vol. 53, Issue 20, pp. 4413-4419 (2014)
http://dx.doi.org/10.1364/AO.53.004413


View Full Text Article

Enhanced HTML    Acrobat PDF (707 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a high power, single frequency, linearly polarized master oscillator power amplifier emitting 110 ns, 1 kW peak power pulses at 2050 nm. A 20% slope efficiency and a beam quality of M2=1.21 are achieved with three-stage double-clad Tm3+-doped fiber architecture. Various pump schemes are compared leading to the conclusion that 793 nm pump wavelength is the most efficient for amplification at 2050 nm. Based on numerical simulations, the Brillouin gain coefficient around 2 μm in Tm3+ highly doped silica fiber is estimated to 1.2×1011m/W. Output peak power is limited by stimulated Brillouin scattering to 535 W without mitigation and to 1 kW with application of a strain distribution along the doped fiber.

© 2014 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 19, 2014
Revised Manuscript: May 2, 2014
Manuscript Accepted: May 20, 2014
Published: July 3, 2014

Citation
Erik Lucas, Laurent Lombard, Yves Jaouën, Sylvain Bordais, and Guillaume Canat, "1  kW peak power, 110  ns single-frequency thulium doped fiber amplifier at 2050  nm," Appl. Opt. 53, 4413-4419 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-20-4413


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Creeden, P. A. Budni, and P. A. Ketteridge, “Pulsed Tm-doped fiber lasers for mid-IR frequency conversion,” Proc. SPIE 7195, 71950X (2009). [CrossRef]
  2. A. Godard, “Infrared (2–12  μm) solid-state laser sources: a review,” C.R. Physique 8, 1100–1128 (2007). [CrossRef]
  3. M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2  μm,” Opt. Lett. 36, 2859–2861 (2011). [CrossRef]
  4. G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Single-frequency, single-mode emission at 2040  nm from a 600-W thulium-doped fiber amplifier chain,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper MF2.
  5. J. Geng, Q. Wang, Z. Jiang, T. Luo, S. Jiang, and G. Czarnecki, “Kilowatt-peak-power, single-frequency, pulsed fiber laser near 2  μm,” Opt. Lett. 36, 2293–2295 (2011). [CrossRef]
  6. Q. Wang, J. Geng, T. Luo, and S. Jiang, “2  μm mode-locked fiber lasers,” Proc. SPIE 8237, 82371N (2012). [CrossRef]
  7. A. M. Heidt, Z. Li, J. Sahu, P. C. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “100  kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2  μm,” Opt. Lett. 38, 1615–1617 (2013). [CrossRef]
  8. Q. Fang, W. Shi, K. Kieu, E. Petersen, A. Chavez-Pirson, and N. Peyghambarian, “High power and high energy monolithic single frequency 2  μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20, 16410–16420 (2012). [CrossRef]
  9. W. Shi, E. B. Petersen, D. T. Nguyen, Z. Yao, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “220  μJ monolithic single-frequency Q-switched fiber laser at 2  μm by using highly Tm-doped germanate fibers,” Opt. Lett. 36, 3575–3577 (2011). [CrossRef]
  10. M. J. Li, X. Chen, J. Wang, A. Ruffin, D. Walton, S. Li, D. Nolan, S. Gray, and L. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Optics Fiber Communication Conference (2006), pp. 1–3.
  11. M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, and A. H. McCurdy, “11.2  dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730N (2008). [CrossRef]
  12. N. Yoshizawa and T. Imai, “Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” J. Lightwave Technol. 11, 1518–1522 (1993). [CrossRef]
  13. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19, 1691–1697 (2001). [CrossRef]
  14. M. D. Mermelstein, A. D. Yablon, and C. Headley, “Suppression of stimulated Brillouin scattering in an Er-Yb fiber amplifier utilizing temperature-segmentation,” in Optical Amplifiers and Their Applications, Technical Digest (CD) (Optical Society of America, 2005), paper TuD3.
  15. E. Lucas, L. Lombard, G. Canat, Y. Jaouen, and S. Bordais, “Dependance en temperature d’un amplificateur a fibre dopee thulium pompe a 1560  nm,” in Journées Nationales d’Optique Guidée (JNOG) (2012), pp. 1–3.
  16. S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2  μm,” J. Sel. Topics Quantum Electron. 13, 567–572 (2007). [CrossRef]
  17. F. Roy, F. Leplingard, L. Lorcy, A. Le Sauze, P. Baniel, and D. Bayart, “48% power conversion efficiency in single pump gain-shifted thulium-doped fibre amplifier,” Electron. Lett. 37, 943–945 (2001). [CrossRef]
  18. S. Jackson and T. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17, 948–956 (1999). [CrossRef]
  19. M. Eichhorn, “Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers,” J. Quantum Electron. 41, 1574–1581 (2005). [CrossRef]
  20. P. Peterka, I. Kasik, A. Dhar, B. Dussardier, and W. Blanc, “Theoretical modeling of fiber laser at 810  nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime,” Opt. Express 19, 2773–2781 (2011). [CrossRef]
  21. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, G. Wall, K. F. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” J. Sel. Topics Quantum Electron. 15, 85–92 (2009). [CrossRef]
  22. C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271–283 (1991). [CrossRef]
  23. J. Ji, S. Yoo, P. Shum, and J. Nilsson, “Minimize quantum-defect heating in thulium-doped silica fiber amplifiers by tandem-pumping,” in Photonics Global Conference (PGC) (2012), pp. 1–3.
  24. B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm:silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9  μm,” Appl. Phys. B 78, 325–333 (2004). [CrossRef]
  25. R. W. Boyd, K. Rzewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990). [CrossRef]
  26. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2594 (1972). [CrossRef]
  27. D. Marcuse, “Gaussian approximation of the fundamental modes of graded-index fibers,” J. Opt. Soc. Am. 68, 103–109 (1978). [CrossRef]
  28. M. Nikles, L. Thevenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997). [CrossRef]
  29. M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007). [CrossRef]
  30. R. Engelbrecht, J. Hagen, and M. Schmidt, “SBS-suppression in variably strained fibers for fiber-amplifiers and fiber-lasers with a high spectral power density,” Proc. SPIE 5777, 795–798 (2005). [CrossRef]
  31. L. Zhang, S. Cui, C. Liu, J. Zhou, and Y. Feng, “170  W, single-mode, linearly-polarized, Yb-doped all-fiber amplifier,” Opt. Express 21, 5456–5462 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited