OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 20 — Jul. 10, 2014
  • pp: 4460–4467

Magneto-optical resonator switches in two-dimensional photonic crystals: geometry, symmetry, scattering matrices, and two examples

Victor Dmitriev, Gianni Portela, and Raphael Batista  »View Author Affiliations


Applied Optics, Vol. 53, Issue 20, pp. 4460-4467 (2014)
http://dx.doi.org/10.1364/AO.53.004460


View Full Text Article

Enhanced HTML    Acrobat PDF (7967 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We discuss different geometrical structures of optical switches based on two-dimensional photonic crystals with hexagonal geometry of the unit cell and a magneto-optical resonator. Transition between the states on and off in these switches is achieved by an external DC magnetic field. The input and output waveguides can be front–front, side–side, or front–side coupled to the resonator and these different types of coupling can lead to different mechanisms of switching. Analysis of symmetry and scattering matrices of the switches is based on magnetic group theory. Two examples of switches with 60° and 120° bends and their characteristics are also presented.

© 2014 Optical Society of America

OCIS Codes
(130.4815) Integrated optics : Optical switching devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Diffraction and Gratings

History
Original Manuscript: February 18, 2014
Revised Manuscript: April 30, 2014
Manuscript Accepted: May 28, 2014
Published: July 4, 2014

Citation
Victor Dmitriev, Gianni Portela, and Raphael Batista, "Magneto-optical resonator switches in two-dimensional photonic crystals: geometry, symmetry, scattering matrices, and two examples," Appl. Opt. 53, 4460-4467 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-20-4460


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Yanik and S. Fan, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett. 83, 2739–2741 (2003). [CrossRef]
  2. A. Sharkawy, S. Shi, and D. W. Prather, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048–1059 (2002). [CrossRef]
  3. D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, “Ultrashort photonic crystal optical switch actuated by a microheater,” IEEE Photon. Technol. Lett. 21, 24–26 (2009). [CrossRef]
  4. Z. Wu, M. Levy, V. J. Fratello, and A. M. Merzlikin, “Gyrotropic photonic crystal waveguide switches,” Appl. Phys. Lett. 96, 051125 (2010). [CrossRef]
  5. W. Smigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett. 35, 568–570 (2010). [CrossRef]
  6. V. Dmitriev, M. Kawakatsu, and F. J. M. de Souza, “Compact three-port optical 2D photonic crystal-based circulator of W-format,” Opt. Lett. 37, 3192–3194 (2012). [CrossRef]
  7. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystal,” Opt. Lett. 30, 1989–1991 (2005). [CrossRef]
  8. V. Dmitriev, M. Kawakatsu, and G. Portela, “Compact optical switch based on 2D photonic crystal and magneto-optical cavity,” Opt. Lett. 38, 1016–1018 (2013). [CrossRef]
  9. V. Dmitriev, G. Portela, and D. Zimmer, “Possible mechanisms of switching in symmetrical two-ports based on 2D photonic crystals with magneto-optical resonators,” Opt. Lett. 38, 4040–4043 (2013). [CrossRef]
  10. L. H. Frandsen, A. Harpoth, P. I. Borel, and M. Kristensen, “Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization,” Opt. Express 12, 5916–5921 (2004). [CrossRef]
  11. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton, 2008).
  12. V. Dmitriev, “Symmetry properties of 2D magnetic photonic crystals with square lattice,” Eur. Phys. J. Appl. Phys. 32, 159–165 (2005). [CrossRef]
  13. V. Dmitriev, “Permeability tensor versus permittivity one in theory of nonreciprocal optical components,” Photon. Nanostr. Fundam. Appl. 11, 203–209 (2013). [CrossRef]
  14. A. A. Barybin and V. A. Dmitriev, Modern Electrodynamics and Coupled-Mode Theory: Application to Guided-Wave Optics (Rinton, 2002).
  15. Q. Wang, Z. Ouyang, K. Tao, M. Lin, and S. Ruan, “T-shaped optical circulator based on coupled magneto-optical rods and a side-coupled cavity in a square-lattice photonic crystal,” Phys. Lett. A 376, 646–649 (2012). [CrossRef]
  16. Z. Wang and S. Fan, “Magneto-optical defects in two-dimensional photonic crystals,” Appl. Phys. B 81, 369–375 (2005). [CrossRef]
  17. F. Fan, S.-J. Chang, C. Niu, Y. Hou, and X.-H. Wang, “Magnetically tunable silicon-ferrite photonic crystals for terahertz circulator,” Opt. Commun. 285, 3763–3769 (2012). [CrossRef]
  18. S.-H. Kim and Y.-H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE J. Quantum Electron. 39, 1081–1085 (2003). [CrossRef]
  19. M. C. Sekhar, M. R. Singh, S. Basu, and S. Pinnepalli, “Giant Faraday rotation in BixCe3−xFe5O12 epitaxial garnet films,” Opt. Express 20, 9624–9639 (2012). [CrossRef]
  20. E. L. Nagaev, “Ferromagnetic and antiferromagnetic semiconductors,” Sov. Phys. Usp. 18, 863–892 (1975). [CrossRef]
  21. S. Methfessel and D. C. Mattis, “Magnetic semiconductors,” in Handbuch der Physik, S. Fliigge and H. P. J. Wijn, eds. (Springer, 1968).
  22. A. K. Zvezdin and V. A. Kotov, Modern Magneto-Optics and Magneto-Optical Materials (IOP, 1997).
  23. http://ab-initio.mit.edu .
  24. www.comsol.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited