OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 20 — Jul. 10, 2014
  • pp: 4468–4474

Ultrastable, Zerodur-based optical benches for quantum gas experiments

Hannes Duncker, Ortwin Hellmig, André Wenzlawski, Alexander Grote, Amir Jones Rafipoor, Mona Rafipoor, Klaus Sengstock, and Patrick Windpassinger  »View Author Affiliations


Applied Optics, Vol. 53, Issue 20, pp. 4468-4474 (2014)
http://dx.doi.org/10.1364/AO.53.004468


View Full Text Article

Enhanced HTML    Acrobat PDF (861 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Operating ultracold quantum gas experiments outside of a laboratory environment has so far been a challenging goal, largely due to the lack of sufficiently stable optical systems. In order to increase the thermal stability of free-space laser systems, the application of nonstandard materials such as glass ceramics is required. Here, we report on Zerodur-based optical systems which include single-mode fiber couplers consisting of multiple components jointed by light-curing adhesives. The thermal stability is thoroughly investigated, revealing excellent fiber-coupling efficiencies between 0.85 and 0.92 in the temperature range from 17°C to 36°C. In conjunction with successfully performed vibration tests, these findings qualify our highly compact systems for atom interferometry experiments aboard a sounding rocket as well as various other quantum information and sensing applications.

© 2014 Optical Society of America

OCIS Codes
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(160.2750) Materials : Glass and other amorphous materials
(120.6085) Instrumentation, measurement, and metrology : Space instrumentation
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 24, 2014
Revised Manuscript: June 5, 2014
Manuscript Accepted: June 5, 2014
Published: July 4, 2014

Citation
Hannes Duncker, Ortwin Hellmig, André Wenzlawski, Alexander Grote, Amir Jones Rafipoor, Mona Rafipoor, Klaus Sengstock, and Patrick Windpassinger, "Ultrastable, Zerodur-based optical benches for quantum gas experiments," Appl. Opt. 53, 4468-4474 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-20-4468


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D.-H. Gwo, S. Wang, K. Bower, D. Davidson, P. Ehrensberger, L. Huff, E. Romero, M. Sullivan, K. Triebes, and J. Lipa, “The Gravity Probe-B star-tracking telescope,” Adv. Space Res. 32, 1401–1405 (2003). [CrossRef]
  2. G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garca, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149–S154 (2005). [CrossRef]
  3. D. I. Robertson, E. D. Fitzsimons, C. J. Killow, M. Perreur-Lloyd, H. Ward, J. Bryant, A. M. Cruise, G. Dixon, D. Hoyland, D. Smith, and J. Bogenstahl, “Construction and testing of the optical bench for LISA Pathfinder,” Class. Quantum Grav. 30, 085006 (2013). [CrossRef]
  4. P. Hartmann, R. Jedamzik, S. Reichel, and B. Schreder, “Optical glass and glass ceramic historical aspects and recent developments: a Schott view,” Appl. Opt. 49, D157–D176 (2010). [CrossRef]
  5. T. L. Gustavson, A. Landragin, and M. A. Kasevich, “Rotation sensing with a dual atom-interferometer Sagnac gyroscope,” Class. Quantum Grav. 17, 2385–2398 (2000). [CrossRef]
  6. M. Kasevich and S. Chu, “Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer,” Appl. Phys. B 54, 321–332 (1992). [CrossRef]
  7. A. Peters, K. Y. Chung, and S. Chu, “Measurement of gravitational acceleration by dropping atoms,” Nature 400, 849–852 (1999). [CrossRef]
  8. A. Wicht, J. M. Hensly, E. Sarajlic, and S. Chu, “A preliminary measurement of the fine structure constant based on atom interferometry,” Phys. Scr. T102, 82–88 (2002).
  9. A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38, 25–61 (2001). [CrossRef]
  10. Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose–Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005). [CrossRef]
  11. I. Lesanovsky and W. von Klitzing, “Time-averaged adiabatic potentials: versatile matter-wave guides and atom traps,” Phys. Rev. Lett. 99, 083001 (2007). [CrossRef]
  12. R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, and P. Bouyer, “Detecting inertial effects with airborne matter-wave interferometry,” Nat. Commun. 2, 474 (2011). [CrossRef]
  13. T. van Zoest, N. Gaaloul, Y. Singh, H. Ahlers, W. Herr, S. T. Seidel, W. Ertmer, E. Rasel, M. Eckart, E. Kajari, S. Arnold, G. Nandi, W. P. Schleich, R. Walser, A. Vogel, K. Sengstock, K. Bongs, W. Lewoczko-Adamczyk, M. Schiemangk, T. Schuldt, A. Peters, T. Könemann, H. Müntinga, C. Lämmerzahl, H. Dittus, T. Steinmetz, T. W. Hänsch, and J. Reichel, “Bose–Einstein condensation in microgravity,” Science 328, 1540–1543 (2010). [CrossRef]
  14. H. Müntinga, H. Ahlers, M. Krutzik, A. Wenzlawski, S. Arnold, D. Becker, K. Bongs, H. Dittus, H. Duncker, N. Gaaloul, C. Gherasim, E. Giese, C. Grzeschik, T. W. Hänsch, O. Hellmig, W. Herr, S. Herrmann, E. Kajari, S. Kleinert, C. Lämmerzahl, W. Lewoczko-Adamczyk, J. Malcolm, N. Meyer, R. Nolte, A. Peters, M. Popp, J. Reichel, A. Roura, J. Rudolph, M. Schiemangk, M. Schneider, S. T. Seidel, K. Sengstock, V. Tamma, T. Valenzuela, A. Vogel, R. Walser, T. Wendrich, P. Windpassinger, W. Zeller, T. van Zoest, W. Ertmer, W. P. Schleich, and E. M. Rasel, “Interferometry with Bose–Einstein condensates in microgravity,” Phys. Rev. Lett. 110, 093602 (2013). [CrossRef]
  15. D.-H. Gwo, “Ultra precision and reliable bonding method,” U.S. patent6,284,085 (4September2001).
  16. D.-H. Gwo, “Hydroxide-catalysis bonding,” U.S. patent6,548,176 (15April2003).
  17. E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257–S267 (2005). [CrossRef]
  18. S. Ressel, M. Gohlke, D. Rauen, T. Schuldt, W. Kronast, U. Mescheder, U. Johann, D. Weise, and C. Braxmaier, “Ultrastable assembly and integration technology for ground- and space-based optical systems,” Appl. Opt. 49, 4296–4303 (2010). [CrossRef]
  19. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980). [CrossRef]
  20. J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33, 6294–6302 (1994). [CrossRef]
  21. T. Wilken, M. Lezius, T. W. Hänsch, A. Kohfeldt, A. Wicht, V. Schkolnik, M. Krutzik, H. Duncker, O. Hellmig, P. Windpassinger, K. Sengstock, A. Peters, and R. Holzwarth, “A frequency comb and precision spectroscopy experiment in space,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2013), p. AF2H.5.
  22. M. de Angelis, M. Angonin, Q. Beaufils, C. Becker, A. Bertoldi, K. Bongs, T. Bourdel, P. Bouyer, V. Boyer, S. Dörscher, H. Duncker, W. Ertmer, T. Fernholz, T. Fromhold, W. Herr, P. Krüger, C. Kürbis, C. Mellor, F. P. D. Santos, A. Peters, N. Poli, M. Popp, M. Prevedelli, E. Rasel, J. Rudolph, F. Schreck, K. Sengstock, F. Sorrentino, S. Stellmer, G. Tino, T. Valenzuela, T. Wendrich, A. Wicht, P. Windpassinger, and P. Wolf, “iSense: a portable ultracold-atom-based gravimeter,” Procedia Comput. Sci. 7, 334–336 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited