OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 20 — Jul. 10, 2014
  • pp: 4503–4508

Vortex-phase filtering technique for extracting spatial information from unresolved sources

Garreth J. Ruane, Prachyathit Kanburapa, Jiaxuan Han, and Grover A. Swartzlander, Jr.  »View Author Affiliations


Applied Optics, Vol. 53, Issue 20, pp. 4503-4508 (2014)
http://dx.doi.org/10.1364/AO.53.004503


View Full Text Article

Enhanced HTML    Acrobat PDF (531 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A white light vortex coronagraph was used to experimentally achieve sub-resolution detection. The angular location of the centroid γ, and the angular extent of circular pinhole sources Θ, were measured to within errors of δγ=±0.015λ/D and δΘ=±0.026λ/D. This technique has two advantages over conventional imaging: simple power measurements are made and shorter exposure times may be required to achieve a sufficient signal-to-noise ratio.

© 2014 Optical Society of America

OCIS Codes
(100.5090) Image processing : Phase-only filters
(100.6640) Image processing : Superresolution
(350.1260) Other areas of optics : Astronomical optics
(220.4298) Optical design and fabrication : Nonimaging optics
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Image Processing

History
Original Manuscript: March 19, 2014
Revised Manuscript: May 31, 2014
Manuscript Accepted: June 4, 2014
Published: July 8, 2014

Citation
Garreth J. Ruane, Prachyathit Kanburapa, Jiaxuan Han, and Grover A. Swartzlander, "Vortex-phase filtering technique for extracting spatial information from unresolved sources," Appl. Opt. 53, 4503-4508 (2014)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-53-20-4503


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Osterberg and J. E. Wilkins, “The resolving power of a coated objective,” J. Opt. Soc. Am. 39, 553–557 (1949). [CrossRef]
  2. G. Toraldo Di Francia, “Super-gain antennas and optical resolving power,” Il Nuovo Cimento Suppl. 9, 426–438 (1952).
  3. G. A. Swartzlander, “Obtaining spatial information from an extremely unresolved source,” Opt. Lett. 36, 4731–4733 (2011). [CrossRef]
  4. J. Han, “Imaging unresolved object using vortex mode detection,” M.S. thesis (Rochester Institute of Technology, 2012).
  5. S. N. Khonina, V. V. Kotlyar, M. V. Shinkaryev, V. A. Soifer, and G. V. Uspleniev, “The phase rotor filter,” J. Mod. Opt. 39, 1147–1154 (1992). [CrossRef]
  6. S. Furhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13, 689–694 (2005). [CrossRef]
  7. D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005). [CrossRef]
  8. G. Foo, D. M. Palacios, and G. A. Swartzlander, “Optical vortex coronagraph,” Opt. Lett. 30, 3308–3310 (2005). [CrossRef]
  9. G. A. Swartzlander, E. L. Ford, R. S. Abdul-Malik, L. M. Close, M. A. Peters, D. M. Palacios, and D. W. Wilson, “Astronomical demonstration of an optical vortex coronagraph,” Opt. Express 16, 10200–10207 (2008). [CrossRef]
  10. E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464, 1018–1020 (2010). [CrossRef]
  11. P. Kanburapa and G. A. Swartzlander, “White-light optical vortex coronagraph,” in Frontiers in Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper FTh4E.2.
  12. P. Kanburapa, “White-light optical vortex coronagraph,” M.S. thesis (Rochester Institute of Technology, 2012).
  13. R. Errmann, S. Minardi, and T. Pertsch, “A broad-band scalar vortex coronagraph,” Mon. Not. R. Astron. Soc. 435, 565–569 (2013). [CrossRef]
  14. J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5, 154 (2003). [CrossRef]
  15. I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, “Creation of optical vortices in femtosecond pulses,” Opt. Express 13, 7599–7608 (2005). [CrossRef]
  16. A. Carlotti, G. Ricort, and C. Aime, “Phase mask coronagraphy using a Mach–Zehnder interferometer,” Astron. Astrophys. 504, 663–671 (2009). [CrossRef]
  17. Z. Bomzon, V. Kleiner, and E. Hasman, “Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings,” Opt. Lett. 26, 1424–1426 (2001). [CrossRef]
  18. C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98–A106 (2013). [CrossRef]
  19. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006). [CrossRef]
  20. D. Mawet, E. Serabyn, K. Liewer, C. Hanot, S. McEldowney, D. Shemo, and N. O’Brien, “Optical vectorial vortex coronagraphs using liquid crystal polymers: theory, manufacturing and laboratory demonstration,” Opt. Express 17, 1902–1918 (2009). [CrossRef]
  21. N. Murakami, S. Hamaguchi, M. Sakamoto, R. Fukumoto, A. Ise, K. Oka, N. Baba, and M. Tamura, “Design and laboratory demonstration of an achromatic vector vortex coronagraph,” Opt. Express 21, 7400–7410 (2013). [CrossRef]
  22. V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” Pis’ma Zh. Eksp. Teor. Fiz. 52, 1037–1039 (1990) [JETP Lett. 52, 429–431 (1990)].
  23. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992). [CrossRef]
  24. O. Guyon, E. A. Pluzhnik, M. J. Kuchner, B. Collins, and S. T. Ridgway, “Theoretical limits on extrasolar terrestrial planet detection with coronagraphs,” Astrophys. J. Suppl. Ser. 167, 81–99 (2006). [CrossRef]
  25. D. Mawet, L. Pueyo, D. Moody, J. Krist, and E. Serabyn, “The vector vortex coronagraph: sensitivity to central obscuration, low-order aberrations, chromaticism, and polarization,” Proc. SPIE 7739, 773914 (2010).
  26. C. Jenkins, “Optical vortex coronagraphs on ground-based telescopes,” Mon. Not. R. Astron. Soc. 384, 515–524 (2008). [CrossRef]
  27. P. F. Lazorenko, M. Mayor, M. Dominik, F. Pepe, D. Ségransan, and S. Udry, “Precision multi-epoch astrometry with VLT cameras FORS1/2,” Astron. Astrophys. 505, 903–918 (2009). [CrossRef]
  28. F. Malbet, A. Léger, M. Shao, R. Goullioud, P.-O. Lagage, A. G. A. Brown, C. Cara, G. Durand, C. Eiroa, P. Feautrier, B. Jakobsson, E. Hinglais, L. Kaltenegger, L. Labadie, A.-M. Lagrange, J. Laskar, R. Liseau, J. Lunine, J. Maldonado, M. Mercier, C. Mordasini, D. Queloz, A. Quirrenbach, A. Sozzetti, W. Traub, O. Absil, Y. Alibert, A. H. Andrei, F. Arenou, C. Beichman, A. Chelli, C. S. Cockell, G. Duvert, T. Forveille, P. J. V. Garcia, D. Hobbs, A. Krone-Martins, H. Lammer, N. Meunier, S. Minardi, A. M. de Almeida, N. Rambaux, S. Raymond, H. J. A. Röttgering, J. Sahlmann, P. A. Schuller, D. Ségransan, F. Selsis, J. Surdej, E. Villaver, G. J. White, and H. Zinnecker, “High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT),” Exp. Astron. 34, 385–413 (2012).
  29. M. Shahram and P. Milanfar, “Statistical analysis of achievable resolution in incoherent imaging,” Proc. SPIE 5204, 1–9 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited