OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 20 — Jul. 10, 2014
  • pp: 4524–4531

Exact analytic solutions of Maxwell’s equations describing propagating nonparaxial electromagnetic beams

Roger L. Garay-Avendaño and Michel Zamboni-Rached  »View Author Affiliations

Applied Optics, Vol. 53, Issue 20, pp. 4524-4531 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (646 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we propose a method that is capable of describing in exact and analytic form the propagation of nonparaxial scalar and electromagnetic beams. The main features of the method presented here are its mathematical simplicity and the fast convergence in the cases of highly nonparaxial electromagnetic beams, enabling us to obtain high-precision results without the necessity of lengthy numerical simulations or other more complex analytical calculations. The method can be used in electromagnetism (optics, microwaves) as well as in acoustics.

© 2014 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(260.0260) Physical optics : Physical optics
(260.1960) Physical optics : Diffraction theory
(350.5500) Other areas of optics : Propagation
(350.7420) Other areas of optics : Waves
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Physical Optics

Original Manuscript: March 26, 2014
Revised Manuscript: May 15, 2014
Manuscript Accepted: May 22, 2014
Published: July 9, 2014

Roger L. Garay-Avendaño and Michel Zamboni-Rached, "Exact analytic solutions of Maxwell’s equations describing propagating nonparaxial electromagnetic beams," Appl. Opt. 53, 4524-4531 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Carnicer, I. Juvells, D. Maluenda, R. Martínez-Herrero, and P. M. Mejías, “The longitudinal component of paraxial fields,” Eur. J. Phys. 33, 1235–1247 (2012). [CrossRef]
  2. P. Varga and P. Török, “The Gaussian wave solution of Maxwell’s equations and the validity of scalar wave approximation,” Opt. Commun. 152, 108–118 (1998). [CrossRef]
  3. A. April, “Nonparaxial TM and TE beams in free space,” Opt. Lett. 33, 1563–1565 (2008). [CrossRef]
  4. R. Borghi, A. Ciattoni, and M. Santarsiero, “Exact axial electromagnetic field for vectorial Gaussian and flattened Gaussian boundary distributions,” J. Opt. Soc. Am. A 19, 1207–1211 (2002). [CrossRef]
  5. M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975). [CrossRef]
  6. P. C. Chaumet, “Fully vectorial highly nonparaxial beam close to the waist,” J. Opt. Soc. Am. A 23, 3197–3202 (2006). [CrossRef]
  7. A. Ciattoni, B. Crosignani, and P. D. Porto, “Vectorial analytical description of propagation of a highly nonparaxial beam,” Opt. Commun. 202, 17–20 (2002). [CrossRef]
  8. A. April, “Bessel–Gauss beams as rigorous solutions of the Helmholtz equation,” J. Opt. Soc. Am. A 28, 2100–2107 (2011). [CrossRef]
  9. S. Nemoto, “Nonparaxial Gaussian beams,” Appl. Opt. 29, 1940–1946 (1990). [CrossRef]
  10. M. Zamboni-Rached and E. Recami, “Sub-luminal wave bullets: exact localized subluminal solutions to the wave equations,” Phys. Rev. A 77, 033824 (2008). [CrossRef]
  11. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002). [CrossRef]
  12. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001). [CrossRef]
  13. T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406, 1027–1031 (2000). [CrossRef]
  14. Localized Waves: Theory and Applications, H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, eds. (Wiley, 2008).
  15. Non-Diffracting Waves, H. E. Hernández-Figueroa, E. Recamim, and M. Zamboni-Rached, eds. (Wiley-VCH, 2014).
  16. I. M. Besieris, A. M. Shaarawi, and R. W. Ziolkowski, “A bidirectional traveling plane wave representation of exact solutions of the scalar wave equation,” J. Math. Phys. 30, 1254–1269 (1989). [CrossRef]
  17. I. Besieris and A. Shaarawi, “Paraxial localized waves in free space,” Opt. Express 12, 3848–3864 (2004). [CrossRef]
  18. M. Zamboni-Rached, E. Recami, and H. Figueroa, “New localized superluminal solutions to the wave equations-with finite total energies and arbitrary frequencies,” Eur. Phys. J. D 21, 217–228 (2002). [CrossRef]
  19. M. Zamboni-Rached, “Unidirectional decomposition method for obtaining exact localized wave solutions totally free of backward components,” Phys. Rev. A 79, 013816 (2009). [CrossRef]
  20. M. Zamboni-Rached, “Localized waves: structure and applications,” M.Sc. thesis (Physics Department, State University of Campinas, 1999).
  21. M. Zamboni-Rached, “Localized waves in diffractive/dispersive media,” Ph.D. thesis (State University of Campinas, 2004).
  22. I. S. Gradshteyn and I. M. Ryzhik, Integrals, Series and Products, 5th ed. (Academic, 1965).
  23. Classical Electrodynamics, J. D. Jackson, ed., 3rd ed. (Wiley, 1998), pp. 239–242.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited